如圖所示,三角形紙片ABC中,∠A=70°,∠B=78°,將紙片的一角折疊,使點C落在△ABC內(nèi),若∠1=15°,則∠2的度數(shù)為________.

49°
分析:根據(jù)題意,已知∠A=65°,∠B=75°,可結(jié)合三角形內(nèi)角和定理和折疊變換的性質(zhì)求解.
解答:解:∵∠A=70°,∠B=78°,
∴∠C=180°-(70°+78°)=32°,
∴∠CDE+∠CED=180°-∠C=148°,
∴∠2=360°-(∠A+∠B+∠1+∠CED+∠CDE)=360°-311°=49°.
故答案是:49°.
點評:本題通過折疊變換考查三角形、四邊形內(nèi)角和定理.注意折疊前后圖形全等;三角形內(nèi)角和為180°;四邊形內(nèi)角和等于360度.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,三角形紙片ABC中,∠A=70°,∠B=78°,將紙片的一角折疊,使點C落在△ABC內(nèi),若∠1=15°,則∠2的度數(shù)為
49°
49°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆湖北省宜昌市長陽縣九年級上學(xué)期期末檢測數(shù)學(xué)試卷(帶解析) 題型:解答題

在如圖所示的三角形紙片ABC中,∠C=90°,∠B=30°,按如下步驟可以把這個直角三角形紙片分成三個全等的小直角三角形(圖中虛線表示折痕)。①先將點B對折到點A,②將對折后的紙片再沿AD對折。

(1)由步驟①可以得到哪些等量關(guān)系?
(2)請證明△ACD≌△AED                                        
(3)按照這種方法能否將任意一個直角三角形分成三個全等的小三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年湖北省宜昌市長陽縣九年級上學(xué)期期末檢測數(shù)學(xué)試卷(解析版) 題型:解答題

在如圖所示的三角形紙片ABC中,∠C=90°,∠B=30°,按如下步驟可以把這個直角三角形紙片分成三個全等的小直角三角形(圖中虛線表示折痕)。①先將點B對折到點A,②將對折后的紙片再沿AD對折。

(1)由步驟①可以得到哪些等量關(guān)系?

(2)請證明△ACD≌△AED                                        

(3)按照這種方法能否將任意一個直角三角形分成三個全等的小三角形?

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:期末題 題型:解答題

在如圖所示的三角形紙片ABC中,∠C=90°,∠B=30°,按如下步驟可以把這個直角三角形紙片分成三個全等的小直角三角形(圖中虛線表示折痕)。①先將點B對折到點A,②將對折后的紙片再沿AD對折。
(1)由步驟①可以得到哪些等量關(guān)系?
(2)請證明△ACD≌△AED;
(3)按照這種方法能否將任意一個直角三角形分成三個全等的小三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在如圖所示的三角形紙片ABC中,∠C=90°,∠B=30°,按如下步驟可以把這個直角三角形紙片分成三個全等的小直角三角形(圖中虛線表示折痕)。①先將點B對折到點A,②將對折后的紙片再沿AD對折。

(1)由步驟①可以得到哪些等量關(guān)系?

(2)請證明△ACD≌△AED                                       

(3)按照這種方法能否將任意一個直角三角形分成三個全等的小三角形?

 


查看答案和解析>>

同步練習(xí)冊答案