【題目】如圖,在RtABC中,C=90°,AC=4cosA=,點(diǎn)D是斜邊AB上的動(dòng)點(diǎn)且不與A,B重合,連接CD,點(diǎn)B'與點(diǎn)B關(guān)于直線CD對(duì)稱,連接B'D,當(dāng)B'D垂直于RtABC的直角邊時(shí),BD的長(zhǎng)為______

【答案】13

【解析】

cosA=,AC=4,得AB=5,從而得BC=3,分兩種情況:①如圖1中,當(dāng)B′DBC時(shí),②如圖2中,當(dāng)DB′ACE時(shí),分別求出BD的值,即可.

cosA==,AC=4

AB=5,

BC===3,

①如圖1中,當(dāng)B′DBC時(shí),設(shè)B′DBCE

∵點(diǎn)B'與點(diǎn)B關(guān)于直線CD對(duì)稱,

∴∠ADC=∠BDM=∠B′DM=CDE

∵∠ACB=∠B′EB=90°,

ACB′E,

∴∠ACD=CDE=ADC

AD=AC=4,

BD=AB-AD=5-4=1

②如圖2,當(dāng)DB′ACE時(shí),同理可得:BC=BD=3,

綜上所述,滿足條件的BD的值為13

故答案是:13

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C對(duì)稱軸為直線x=1.直線y=﹣x+c與拋物線y=ax2+bx+c交于C、D兩點(diǎn),D點(diǎn)在x軸下方且橫坐標(biāo)小于3,則下列結(jié)論:

①2a+b+c>0;②a﹣b+c<0;③x(ax+b)≤a+b;④a<﹣1.

其中正確的有( 。

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)為A(﹣3,4),B(﹣4,2),C(﹣2,1),△ABC繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°,得到△A1B1C1,將△A1B1C1向右平移6個(gè)單位,再向上平移2個(gè)單位得到△A2B2C2

(1)畫出△A1B1C1和△A2B2C2;

(2)△ABC經(jīng)旋轉(zhuǎn)、平移后點(diǎn)A的對(duì)應(yīng)點(diǎn)分別為A1、A2,請(qǐng)寫出點(diǎn)A1、A2的坐標(biāo);

(3)Pa,b)是△ABC的邊AC上一點(diǎn),△ABC經(jīng)旋轉(zhuǎn)、平移后點(diǎn)P的對(duì)應(yīng)點(diǎn)分別為P1,P2,請(qǐng)寫出點(diǎn)P1、P2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的是(  ).

A. “打開電視機(jī),正在播放《動(dòng)物世界》”是必然事件

B. 某種彩票的中獎(jiǎng)概率為,說明每買1000張,一定有一張中獎(jiǎng)

C. 拋擲一枚質(zhì)地均勻的硬幣一次,出現(xiàn)正面朝上的概率為

D. 想了解長(zhǎng)沙市所有城鎮(zhèn)居民的人均年收入水平,宜采用抽樣調(diào)查

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 定義:在凸四邊形中,我們把兩組對(duì)邊乘積的和等于對(duì)角線的乘積的四邊形稱為完美四邊形

1)在正方形、矩形、菱形中,一定是完美四邊形的是______

2)如圖1,在△ABC中,AB=2,BC=,AC=3,D為平面內(nèi)一點(diǎn),以A、B、C、D四點(diǎn)為頂點(diǎn)構(gòu)成的四邊形為完美四邊形,若DA,DC的長(zhǎng)是關(guān)于x的一元二次方程x2-(m+3)x+(5m2-2m+13)=0(其中m為常數(shù))的兩個(gè)根,求線段BD的長(zhǎng)度.

3)如圖2,在完美四邊形”EFGH中,∠F=90°EF=6,FG=8,求完美四邊形”EFGH面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABACD的外接圓⊙O的直徑,CDAB于點(diǎn)F,其中AC=AD,AD的延長(zhǎng)線交過點(diǎn)B的切線BM于點(diǎn)E

1)求證:CDBM;

2)連接OECD于點(diǎn)G,若DE=2,AB=4,求OG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,利用一面墻(墻的長(zhǎng)度為15 m),用籬笆圍成一個(gè)矩形花園ABCD,中間再用一道籬笆隔成兩個(gè)小矩形,共用去籬笆42 m.設(shè)平行于墻的一邊BC長(zhǎng)為x m,花園的面積為S m2

1)求Sx之間的函數(shù)解析式;

2)問花園面積可以達(dá)到120平方米嗎?如果能,花園的長(zhǎng)和寬各是多少?如果不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC

1)證明ABDF是平行四邊形;

2)若AF=DF=5AD=6,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx+ca0)經(jīng)過點(diǎn)A-1,0)、B40)與y軸交于點(diǎn)C,tanABC=

1)求拋物線的解析式;

2)點(diǎn)M在第一象限的拋物線上,ME平行y軸交直線BC于點(diǎn)E,連接AC、CE,當(dāng)ME取值最大值時(shí),求ACE的面積.

3)在y軸負(fù)半軸上取點(diǎn)D0-1),連接BD,在拋物線上是否存在點(diǎn)N,使BAN=ACO-OBD?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案