【題目】如圖,在邊長為1的正方形網(wǎng)格內有一直角坐標系,其中,A點為(-3,0),B點為(-1,2)

(1)C點的坐標為 ;

(2)依次連接ABC得到三角形,將三角形ABC先向右移動3個單位再向下移動2個單位,得到三角形A'B'C',請在圖中作出平移后的圖形,并寫出三個頂點A'、B' C' 的坐標;

(3)連接C'C、B'B,直接寫出四邊形CC' B'B的面積。

【答案】(1)(-2,-1);(2)作圖見解析,A'(0,-2),B'(2,0),C'(1,-3);(3)11.

【解析】試題分析:(1)根據(jù)A點為(-3,0),B點為(-1,2),即可確定點C的坐標;(2)根據(jù)題意畫出圖形后直接寫出點A'、B' 、C' 的坐標即可;(2)利用矩形的面積減去4個直角三角形的面積即可.

試題解析:

(1)C點的坐標為 (-2,-1) ;

(2)如圖所示;A'(0,-2),B'(2,0),C'(1,-3)

(3)四邊形CC' B'B的面積是11

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,從①∠1=∠2 ②∠C=∠D ③∠A=∠F 三個條件中選出兩個作為已知條件,另一個作為結論所組成的命題中,正確命題的個數(shù)為(  )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果數(shù)軸上的點A對應的數(shù)為3,那么與A點相距200個單位長度的點所對應的有理數(shù)為_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列運算正確的是( 。

A. a4+a2=a4 B. (x2y)3=x6y3

C. (m﹣n)2=m2﹣n2 D. b6÷b2=b3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】不能判定四邊形ABCD為平行四邊形的條件是

A. ABCD,AD=BC B. ABCDA=C

C. ADBC,AD=BC D. A=C,B=D

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(12分)如圖,直角三角形的頂點A、Bx軸上,ABC=90 ,BC//y軸,且C點在第二象限,B點為(-3,0),將直角三角形ABC沿x軸水平向右平移m個單位,得到對應的直角三角形DEF,其中點A、B、C分別對應點D、E、F,求:

(1)用含m的式子表示E點坐標及AD的長度;

(2)若C點為(-3,n),設四邊形BEFC的周長為y,試用含m、n的式子表示周長y;

(3)在(2)的條件下,點P和點Q分別以1個單位/秒,2個單位/秒的速度同時從B點出發(fā),其中,P點沿BC→F→E→B的方向運動,Q點沿BE→F→C→B的方向運動,相遇時則停止運動。當P點到達C點時,Q點恰到達E點;從B點出發(fā)起,6秒后P點與Q點相遇停止了運動,求四邊形ADFC的面積。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=2x+3與y軸交于A點,與反比例函數(shù)y=(x>0)的圖象交于點B,過點B作BC⊥x軸于點C,且C點的坐標為(1,0).

(1)求反比例函數(shù)的解析式;

(2)點D(a,1)是反比例函數(shù)y=(x>0)圖象上的點,在x軸上是否存在點P,使得PB+PD最?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知不透明的袋中只裝有黑、白兩種球,這些球除顏色外都相同,其中白球有30個,黑球有n個.隨機地從袋中摸出一個球,記錄下顏色后,放回袋子中并搖勻,再從中摸出一個球,經過如此大量重復試驗,發(fā)現(xiàn)摸出的黑球的頻率穩(wěn)定在0.4附近,則n的值約為(

A. 20 B. 30 C. 40 D. 50

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,線段AB的長為20,點D在AB上,△ACD是邊長為8的等邊三角形,過點D作與CD垂直的射線DP,過DP上一動點G(不與D重合)作矩形CDGH,記矩形CDGH的對角線交點為O,連接OB,則線段BO的最小值為( )

A. 10 B. 6 C. 8 D. 6

查看答案和解析>>

同步練習冊答案