(2009•濟(jì)寧)閱讀下面的材料:在平面幾何中,我們學(xué)過(guò)兩條直線平行的定義.下面就兩個(gè)一次函數(shù)的圖象所確定的兩條直線,給出它們平行的定義:設(shè)一次函數(shù)y=k1x+b1(k1≠0)的圖象為直線l1,一次函數(shù)y=k2x+b2(k2≠0)的圖象為直線l2,若k1=k2,且b1≠b2,我們就稱直線l1與直線l2互相平行.解答下面的問(wèn)題:
(1)求過(guò)點(diǎn)P(1,4)且與已知直線y=-2x-1平行的直線l的函數(shù)表達(dá)式,并畫(huà)出直線l的圖象;
(2)設(shè)直線l分別與y軸、x軸交于點(diǎn)A、B,如果直線m:y=kx+t(t>0)與直線l平行且交x軸于點(diǎn)C,求出△ABC的面積S關(guān)于t的函數(shù)表達(dá)式.

【答案】分析:(1)直線l與已知直線y=-2x-1平行,因而直線的一次項(xiàng)系數(shù)是-2,根據(jù)待定系數(shù)法就可以求出函數(shù)解析式.
(2)點(diǎn)A、B的坐標(biāo)可以求出,點(diǎn)C的位置應(yīng)分在B點(diǎn)的左側(cè)和右側(cè)兩種情況進(jìn)行討論.根據(jù)三角形的面積就可以求出C點(diǎn)的坐標(biāo).
解答:解:(1)設(shè)直線l的函數(shù)表達(dá)式為y=kx+b,
∵直線l與直線y=-2x-1平行,∴k=-2,
∵直線l過(guò)點(diǎn)(1,4),
∴-2+b=4,
∴b=6.
∴直線l的函數(shù)表達(dá)式為y=-2x+6.
直線l的圖象如圖.

(2)∵直線l分別與y軸、x軸交于點(diǎn)A、B,
∴點(diǎn)A、B的坐標(biāo)分別為(0,6)、(3,0).
∵l∥m,
∴直線m為y=-2x+t.令y=0,解得x=,
∴C點(diǎn)的坐標(biāo)為(,0).
∵t>0,∴>0.
∴C點(diǎn)在x軸的正半軸上.
當(dāng)C點(diǎn)在B點(diǎn)的左側(cè)時(shí),S=×(3-)×6=9-
當(dāng)C點(diǎn)在B點(diǎn)的右側(cè)時(shí),S=×(-3)×6=-9.
∴△ABC的面積S關(guān)于t的函數(shù)表達(dá)式為S=
點(diǎn)評(píng):本題主要考查了待定系數(shù)法求函數(shù)的解析式,以及函數(shù)平行的條件,是需要熟記的內(nèi)容.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2009年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(05)(解析版) 題型:解答題

(2009•濟(jì)寧)閱讀下面的材料:在平面幾何中,我們學(xué)過(guò)兩條直線平行的定義.下面就兩個(gè)一次函數(shù)的圖象所確定的兩條直線,給出它們平行的定義:設(shè)一次函數(shù)y=k1x+b1(k1≠0)的圖象為直線l1,一次函數(shù)y=k2x+b2(k2≠0)的圖象為直線l2,若k1=k2,且b1≠b2,我們就稱直線l1與直線l2互相平行.解答下面的問(wèn)題:
(1)求過(guò)點(diǎn)P(1,4)且與已知直線y=-2x-1平行的直線l的函數(shù)表達(dá)式,并畫(huà)出直線l的圖象;
(2)設(shè)直線l分別與y軸、x軸交于點(diǎn)A、B,如果直線m:y=kx+t(t>0)與直線l平行且交x軸于點(diǎn)C,求出△ABC的面積S關(guān)于t的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年貴州省貴陽(yáng)市中考適應(yīng)性考試數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•濟(jì)寧)閱讀下面的材料:在平面幾何中,我們學(xué)過(guò)兩條直線平行的定義.下面就兩個(gè)一次函數(shù)的圖象所確定的兩條直線,給出它們平行的定義:設(shè)一次函數(shù)y=k1x+b1(k1≠0)的圖象為直線l1,一次函數(shù)y=k2x+b2(k2≠0)的圖象為直線l2,若k1=k2,且b1≠b2,我們就稱直線l1與直線l2互相平行.解答下面的問(wèn)題:
(1)求過(guò)點(diǎn)P(1,4)且與已知直線y=-2x-1平行的直線l的函數(shù)表達(dá)式,并畫(huà)出直線l的圖象;
(2)設(shè)直線l分別與y軸、x軸交于點(diǎn)A、B,如果直線m:y=kx+t(t>0)與直線l平行且交x軸于點(diǎn)C,求出△ABC的面積S關(guān)于t的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年山東省濟(jì)寧市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•濟(jì)寧)作為一項(xiàng)惠農(nóng)強(qiáng)農(nóng)應(yīng)對(duì)當(dāng)前國(guó)際金融危機(jī)、拉動(dòng)國(guó)內(nèi)消費(fèi)需求的重要措施,“家電下鄉(xiāng)”工作已經(jīng)國(guó)務(wù)院批準(zhǔn)從2008年12月1日起在我市實(shí)施.我市某家電公司營(yíng)銷點(diǎn)自去年12月份至今年5月份銷售兩種不同品牌冰箱的數(shù)量如下圖:
(1)完成下表:
  平均數(shù)方差 
甲品牌銷售量/臺(tái)  10 
乙品牌銷售量/臺(tái)  
(2)請(qǐng)你依據(jù)折線圖的變化趨勢(shì),對(duì)營(yíng)銷點(diǎn)今后的進(jìn)貨情況提出建議.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年山東省濟(jì)寧市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2009•濟(jì)寧)請(qǐng)你閱讀下面的詩(shī)句:“棲樹(shù)一群鴉,鴉樹(shù)不知數(shù),三只棲一樹(shù),五只沒(méi)去處,五只棲一樹(shù),閑了一棵樹(shù),請(qǐng)你仔細(xì)數(shù),鴉樹(shù)各幾何”詩(shī)句中談到的鴉為    只,樹(shù)為    棵.

查看答案和解析>>

同步練習(xí)冊(cè)答案