11.化簡$\sqrt{{x}^{2}+6x+9}$+$\sqrt{{x}^{2}-2x+1}$-$\sqrt{{x}^{2}-4x+4}$.

分析 根據(jù)二次根式的性質(zhì)把原式變形,分x<-3、-3≤x≤1、1<x≤2、x>2四種情況,根據(jù)絕對值的性質(zhì)計算即可.

解答 解:原式=$\sqrt{({x+3)}^{2}}$+$\sqrt{({x-1)}^{2}}$-$\sqrt{(x-2)^{2}}$=|x+3|+|x-1|+|x-2|,
當x<-3時,原式=-(x+3)-(x-1)+(x-2)=-x-4,
當-3≤x≤1時,原式=(x+3)-(x-1)+(x-2)=-x+2,
當1<x≤2時,原式=(x+3)+(x-1)+(x-2)=3x,
當x>2時,原式=(x+3)+(x-1)-(x-2)=x+4.

點評 本題考查的是二次根式的性質(zhì)與化簡,掌握二次根式的性質(zhì):$\sqrt{{a}^{2}}$=|a|是解題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

1.因式分解
(1)16(a-b)2-9(a+b)2
(2)3x2-12x+12.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

2.如圖是我市十二月份某一天的天氣預報,該天最高氣溫比最低氣溫高7℃.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

19.若一個三角形兩邊長是5和6,則第三邊的長可能是3.(寫一個符合條件的即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

6.(1)先化簡,再求值:$\frac{1}{a+1}$÷$\frac{a}{{a}^{2}+2a+1}$,其中a=4.
(2)分解因式:y2+2y+1-x2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

16.如圖,馬路的兩邊CF,DE互相平行,線段CD為人行橫道,馬路兩側的A,B兩點分別表示車站和超市.CD與AB所在直線互相平行,且都與馬路的兩邊垂直.馬路寬20米,A,B相距62米,∠A=67°,∠B=37°.
(1)求CD與AB之間的距離;
(2)某人從車站A出發(fā),沿折線A→D→C→B去超市B.求他沿折線A→D→C→B到達超市比直接橫穿馬路多走多少米.
參考數(shù)據(jù):sin67°$≈\frac{12}{13}$,cos67°≈$\frac{12}{5}$,tan67°≈$\frac{12}{5}$,sin37°≈$\frac{3}{5}$,cos37°≈$\frac{4}{5}$,tan37°≈$\frac{3}{4}$.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

3.如圖,圖①,圖②中陰影部分的面積為S1,S2,a>b>0,設k=$\frac{{S}_{1}}{{S}_{2}}$,則有( 。
A.0<k<$\frac{1}{2}$B.$\frac{1}{2}$<k<1C.1<k<2D.k>2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

20.下列圖形,是中心對稱圖形但不是軸對稱圖形的是( 。
A.等邊三角形B.平行四邊形C.D.正五邊形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

1.為提高義務教育階段學生的身體素質(zhì),教育行政部門規(guī)定:初中生每天參加戶外活動的平均時間不少于1小時.為了了解學生參加戶外活動的情況,對部分學生參加戶外活動的時間進行抽樣調(diào)查,并將調(diào)查結果繪制成圖1、圖2兩幅不完整的統(tǒng)計圖,根據(jù)圖中所提供的信息,下列判斷:
①這次共調(diào)查了50名學生;
②調(diào)查的學生中戶外活動的時間為1小時的人數(shù)為20人;
③圖2中表示戶外活動的時間為0.5小時的扇形圓心角的度數(shù)是72°;
④本次調(diào)查中學生參加戶外活動的平均時間是1.18小時,符合要求.
上面四句判斷正確的個數(shù)是(  )
A.1個B.2個C.3個D.4個

查看答案和解析>>

同步練習冊答案