【題目】已知△ABC中,AB=AC,BAC=90°.

(1)如圖,若CD平分∠ACB,BECD,垂足ECD的延長線上,試探究線段BECD的數(shù)量關(guān)系,并證明你的結(jié)論

(2)如圖,若點(diǎn)D在線段BC延長上,BEDE,垂足為E,DEAB相交于點(diǎn)F.試探究線段BEFD的數(shù)量關(guān)系,并證明你的結(jié)論.

【答案】(1)CD=2BE,證明見解析;(2)DF=2BE,證明見解析.

【解析】

(1)如圖,證明ABF≌△ACD,得CD=BF,2BE=CD;
(2)如圖,同(1)作輔助線,證明△BHG≌△DHFDF=BG=2BE

(1) 延長BE、CA交于點(diǎn)E

CEBF, CD平分∠ACB

∴△BCE為等腰三角形, BF=2BE

易證∠ACD=ABF

在△ABF和△ACD

∴△ABF≌△ACD…………………5

CD=BF=2BE.

(2)DDGACBE的延長線于G,BA的延長線于H

∴∠GDB=ACB=ABC

BH=DH

同(1)法證在△BHG≌△DHFDF=BG=2BE.

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的角平分線上的一點(diǎn),,的中點(diǎn),點(diǎn)上的一個(gè)動點(diǎn),若的最小值為,則的長度為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠A=135°,AB=20,AC=30,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)條件求二次函數(shù)的解析式
(1)二次函數(shù)y=ax2+bx+c的對稱軸為x=3,最小值為﹣2,且過(0,1)點(diǎn).
(2)拋物線過(﹣1,0),(3,0),(1,﹣5)三點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰三角形△ABC中,AC=BC,D、E分別為AB、BC上一點(diǎn),∠CDE=A.

(1)如圖,若BC=BD,求證:CD=DE;

(2)如圖,過點(diǎn)CCHDE,垂足為H,若CD=BD,,直接寫出CE-BE的值為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,△ABC各頂點(diǎn)都在格點(diǎn)上,點(diǎn)A,C的坐標(biāo)分別為(﹣5,1)、(﹣1,4),結(jié)合所給的平面直角坐標(biāo)系解答下列問題:

(1)①畫出△ABC關(guān)于y軸對稱的△A1B1C1;
②畫出△ABC關(guān)于原點(diǎn)O對稱的△A2B2C2
(2)點(diǎn)C1的坐標(biāo)是;點(diǎn)C2的坐標(biāo)是
(3)試判斷:△A1B1C1與△A2B2C2是否關(guān)于x軸對稱?(只需寫出判斷結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一直角坐標(biāo)系中,函數(shù)y=mx+m和y=﹣mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=﹣ +bx+c的圖象經(jīng)過A(2,0)、B(0,﹣6)兩點(diǎn).

(1)求這個(gè)二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)的對稱軸與x軸交于點(diǎn)C,連接BA,BC,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BCE,若BC=20cm,則△DEB的周長為___cm.

查看答案和解析>>

同步練習(xí)冊答案