(2010•錦州)△ABC在平面直角坐標系中的位置如圖所示,其中每個小正方形的邊長為1個單位長度.
(1)將△ABC向右移平2個單位長度,作出平移后的△A1B1C1,并寫出△A1B1C1各頂點的坐標;
(2)若將△ABC繞點(-1,0)順時針旋轉(zhuǎn)180°后得到△A2B2C2,并寫出△A2B2C2各頂點的坐標;
(3)觀察△A1B1C1和△A2B2C2,它們是否關(guān)于某點成中心對稱?若是,請寫出對稱中心的坐標;若不是,說明理由.

【答案】分析:(1)根據(jù)平移的規(guī)律找到出平移后的對應(yīng)點的坐標,依次為A1(0,4),B1(-2,2),C1(-1,1);順次連接即可得到答案;
(2)根據(jù)旋轉(zhuǎn)中心對稱的規(guī)律可得:旋轉(zhuǎn)后對應(yīng)點的坐標,依次為A2(0,-4),B2(2,-2),C2(1,-1);順次連接即可;
(3)觀察可得,△A1B1C1與△A2B2C2關(guān)于點(0,0)成中心對稱.
解答:解:(1)A1(0,4),B1(-2,2),C1(-1,1);(3分)(圖形正確給(2分),坐標正確給1分)

(2)A2(0,-4),B2(2,-2),C2(1,-1);(3分)
(圖形正確給(2分),坐標正確給1分)

(3)△A1B1C1與△A2B2C2關(guān)于點(0,0)成中心對稱.(2分)(指出是中心對稱給(1分),寫出點的坐標給1分)
點評:本題通過圖象的平移,感受平移在生活中的應(yīng)用,體會數(shù)學(xué)與生活的緊密聯(lián)系,考查學(xué)生的動手能力.注意平移關(guān)鍵是先確定幾個關(guān)健點,接著把這幾個點分別移動,再連成圖形便可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2010•錦州)如圖,拋物線與x軸交于A(x1,0),B(x2,0)兩點,且x1>x2,與y軸交于點C(0,4),其中x1,x2是方程x2-2x-8=0的兩個根.
(1)求這條拋物線的解析式;
(2)點P是線段AB上的動點,過點P作PE∥AC,交BC于點E,連接CP,當(dāng)△CPE的面積最大時,求點P的坐標;
(3)探究:若點Q是拋物線對稱軸上的點,是否存在這樣的點Q,使△QBC成為等腰三角形?若存在,請直接寫出所有符合條件的點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年山東省泰安市寧陽縣中考數(shù)學(xué)模擬試卷(6)(解析版) 題型:解答題

(2010•錦州)如圖,拋物線與x軸交于A(x1,0),B(x2,0)兩點,且x1>x2,與y軸交于點C(0,4),其中x1,x2是方程x2-2x-8=0的兩個根.
(1)求這條拋物線的解析式;
(2)點P是線段AB上的動點,過點P作PE∥AC,交BC于點E,連接CP,當(dāng)△CPE的面積最大時,求點P的坐標;
(3)探究:若點Q是拋物線對稱軸上的點,是否存在這樣的點Q,使△QBC成為等腰三角形?若存在,請直接寫出所有符合條件的點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年中考數(shù)學(xué)模擬試卷(7)(解析版) 題型:解答題

(2010•錦州)如圖,拋物線與x軸交于A(x1,0),B(x2,0)兩點,且x1>x2,與y軸交于點C(0,4),其中x1,x2是方程x2-2x-8=0的兩個根.
(1)求這條拋物線的解析式;
(2)點P是線段AB上的動點,過點P作PE∥AC,交BC于點E,連接CP,當(dāng)△CPE的面積最大時,求點P的坐標;
(3)探究:若點Q是拋物線對稱軸上的點,是否存在這樣的點Q,使△QBC成為等腰三角形?若存在,請直接寫出所有符合條件的點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖北省某市新人教版中考數(shù)學(xué)模擬試卷(6)(解析版) 題型:解答題

(2010•錦州)如圖,拋物線與x軸交于A(x1,0),B(x2,0)兩點,且x1>x2,與y軸交于點C(0,4),其中x1,x2是方程x2-2x-8=0的兩個根.
(1)求這條拋物線的解析式;
(2)點P是線段AB上的動點,過點P作PE∥AC,交BC于點E,連接CP,當(dāng)△CPE的面積最大時,求點P的坐標;
(3)探究:若點Q是拋物線對稱軸上的點,是否存在這樣的點Q,使△QBC成為等腰三角形?若存在,請直接寫出所有符合條件的點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年遼寧省錦州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•錦州)如圖,拋物線與x軸交于A(x1,0),B(x2,0)兩點,且x1>x2,與y軸交于點C(0,4),其中x1,x2是方程x2-2x-8=0的兩個根.
(1)求這條拋物線的解析式;
(2)點P是線段AB上的動點,過點P作PE∥AC,交BC于點E,連接CP,當(dāng)△CPE的面積最大時,求點P的坐標;
(3)探究:若點Q是拋物線對稱軸上的點,是否存在這樣的點Q,使△QBC成為等腰三角形?若存在,請直接寫出所有符合條件的點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案