若圓錐的軸截面是一個(gè)邊長(zhǎng)為4的等邊三角形,則這個(gè)圓錐的側(cè)面展開后所得到的扇形的圓心角的度數(shù)是  

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖5,平行四邊形的對(duì)角線相交于點(diǎn),過點(diǎn)且與、分別交于點(diǎn)

,求證:

                                                   

                                                                    圖5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


內(nèi)角和與外角和相等的多邊形的邊數(shù)是 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,CF是△ABC的外角∠ACM的平分線,且CF∥AB,∠ACF=50°,則∠B的度數(shù)為( 。

    A.                       80° B.                       40° C.                       60° D.   50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


已知二次函數(shù)y=ax2+bx+c的圖象如圖,則下列敘述正確的是( 。

    A.  abc<0   B.  ﹣3a+c<0     C. b2﹣4ac≥0

    D.  將該函數(shù)圖象向左平移2個(gè)單位后所得到拋物線的解析式為y=ax2+c

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖是我國(guó)古代數(shù)學(xué)家楊輝最早發(fā)現(xiàn)的,稱為“楊輝三角”.它的發(fā)現(xiàn)比西方要早五百年左右,由此可見我國(guó)古代數(shù)學(xué)的成就是非常值得中華民族自豪的!“楊輝三角”中有許多規(guī)律,如它的每一行的數(shù)字正好對(duì)應(yīng)了(a+b)n(n為非負(fù)整數(shù))的展開式中a按次數(shù)從大到小排列的項(xiàng)的系數(shù).例如,(a+b)2=a2+2ab+b2展開式中的系數(shù)1、2、1恰好對(duì)應(yīng)圖中第三行的數(shù)字;再如,(a+b)3=a3+3a2b+3ab2+b3展開式中的系數(shù)1、3、3、1恰好對(duì)應(yīng)圖中第四行的數(shù)字.請(qǐng)認(rèn)真觀察此圖,寫出(a+b)4的展開式,(a+b)4=  

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,一水庫(kù)大壩的橫斷面為梯形ABCD,壩頂BC寬6米,壩高20米,斜坡AB的坡度i=1:2.5,斜坡CD的坡角為30°,求壩底AD的長(zhǎng)度.(精確到0.1米,參考數(shù)據(jù):≈1.414,≈1.732.提示:坡度等于坡面的鉛垂高度與水平長(zhǎng)度之比)°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


某種花卉每盆的盈利與每盆的株數(shù)有一定的關(guān)系,每盆植3株時(shí),平均每株盈利4元;若每盆增加1株,平均每株盈利減少0.5元,要使每盆的盈利達(dá)到15元,每盆應(yīng)多植多少株?設(shè)每盆多植x株,則可以列出的方程是( 。

A.(3+x)(4﹣0.5x)=15                 B.(x+3)(4+0.5x)=15

C. (x+4)(3﹣0.5x)=15                D.(x+1)(4﹣0.5x)=15

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


為了考察冰川融化的狀況,一支科考隊(duì)在某冰川上設(shè)一定一個(gè)以大本營(yíng)O為圓心,半徑為4km 圓形考察區(qū)域,線段P1、P2是冰川的部分邊界線(不考慮其它邊界),當(dāng)冰川融化時(shí),邊界線沿著與其垂直的方向朝考察區(qū)域平行移動(dòng).若經(jīng)過n年,冰川的邊界線P1P2移動(dòng)的距離為s(km),并且s與n(n為正整數(shù))的關(guān)系是.以O(shè)為原點(diǎn),建立如圖所示的平面直角坐標(biāo)系,其中P1、P2的坐標(biāo)分別是(-4,9)、(-13,-3).

(1)求線段P1P2所在的直線對(duì)應(yīng)的函數(shù)關(guān)系式;

(2)求冰川的邊界線移動(dòng)到考察區(qū)域所需要的最短時(shí)間.

  

查看答案和解析>>

同步練習(xí)冊(cè)答案