【題目】RtABC中,∠ACB90°ACBCCDAB邊上的中線(xiàn).在RtAEF中,∠AEF90°,AEEF,AFAC.連接BF,MN分別為線(xiàn)段AF,BF的中點(diǎn),連接MN

1)如圖1,點(diǎn)FABC內(nèi),求證:CDMN;

2)如圖2,點(diǎn)FABC外,依題意補(bǔ)全圖2,連接CNEN,判斷CNEN的數(shù)量關(guān)系與位置關(guān)系,并加以證明;

3)將圖1中的AEF繞點(diǎn)A旋轉(zhuǎn),若ACa,AFbba),直接寫(xiě)出EN的最大值與最小值.

【答案】(1)證明見(jiàn)解析;(2)CN與EN的數(shù)量關(guān)系CN=EN,CN與EN的位置關(guān)系CN⊥EN.證明見(jiàn)解析;(3)EN的最大值為,最小值為

【解析】

(1)利用直角三角形的斜邊的中線(xiàn)等于斜邊的一半和三角形的中位線(xiàn)解題即可;

(2)構(gòu)造出△EMN≌△DNC進(jìn)而利用互余即可得出結(jié)論;

(3)借助(2)的結(jié)論,先判斷出點(diǎn)N是以點(diǎn)D為圓心,為半徑的圓上,即可得出答案.

解:(1)證明:在Rt△ABC中,

∵CD是斜邊AB上的中線(xiàn).

在△ABF中,點(diǎn)M,N分別是邊AF,BF的中點(diǎn),

,

∴CD=MN.

(2)答:CN與EN的數(shù)量關(guān)系CN=EN,

CN與EN的位置關(guān)系CN⊥EN.

證明:連接EM,DN,如圖.

與(1)同理可得 CD=MN,EM=DN.

在Rt△ABC中,CD是斜邊AB邊上的中線(xiàn),

∴CD⊥AB.

在△ABF中,同理可證EM⊥AF.

∴∠EMF=∠CDB=90°.

∵D,M,N分別為邊AB,AF,BF的中點(diǎn),

∴DN∥AF,MN∥AB.

∴∠FMN=∠MND,∠BDN=∠MND.

∴∠FMN=∠BDN.

∴∠EMF+∠FMN=∠CDB+∠BCN.

∴∠EMN=∠NDC.

∴△EMN≌△DNC.

∴CN=EN,∠1=∠2.

∵∠1+∠3+∠EMN=180°,

∴∠2+∠3+∠FMN=90°.

∴∠2+∠3+∠DNM=90°,

即∠CNE=90°.

∴CN⊥EN.

(3)點(diǎn)N是以點(diǎn)D為圓心,為半徑的圓上,

在Rt△ABC中,AC=BC=a,

,

∵CD為AB邊上的中線(xiàn).

,

∴CN最大=,CN最。

由(2)知,EN=CN,

∴EN最大=,EN最小=

即:EN的最大值為,最小值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線(xiàn)軸交于兩點(diǎn)(點(diǎn)在點(diǎn)左側(cè)),與軸交于點(diǎn),點(diǎn)拋物線(xiàn)的頂點(diǎn).

1)求直線(xiàn)的解析式;

2)拋物線(xiàn)對(duì)稱(chēng)軸交軸于點(diǎn),為直線(xiàn)上方的拋物線(xiàn)上一動(dòng)點(diǎn),過(guò)點(diǎn)于點(diǎn),當(dāng)線(xiàn)段的長(zhǎng)最大時(shí),連接,過(guò)點(diǎn)作射線(xiàn),且,點(diǎn)為射線(xiàn)上一動(dòng)點(diǎn)(點(diǎn)不與點(diǎn)重合),連接中點(diǎn),連接,求的最小值;

3)如圖2,平移拋物線(xiàn),使拋物線(xiàn)的頂點(diǎn)在射線(xiàn)上移動(dòng),點(diǎn)平移后的對(duì)應(yīng)點(diǎn)分別為點(diǎn),軸上有一動(dòng)點(diǎn),連接,是否能為等腰直角三角形?若能,請(qǐng)求出所有符合條件的點(diǎn)的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是半圓O的直徑,C、D是半圓O上的兩點(diǎn),且ODBC,ODAC交于點(diǎn)E

1)若∠B=64°,求∠CAD的度數(shù);

2)若AB=10DE=2,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知OA,OB的長(zhǎng)是方程x2-7x+12=0的兩個(gè)(OA>OB),點(diǎn)P從點(diǎn)B出發(fā)沿BA方向向點(diǎn)A勻速運(yùn)動(dòng),速度為每秒1個(gè)單位長(zhǎng)度,點(diǎn)Q從點(diǎn)A出發(fā)沿AO方向向點(diǎn)O勻速運(yùn)動(dòng),速度為每秒2個(gè)單位長(zhǎng)度,連結(jié)PQ.若設(shè)運(yùn)動(dòng)的時(shí)間為t秒(0t2).

(1)AB長(zhǎng);

(2)當(dāng)t為何值時(shí),APQAOB相似?

(3)當(dāng)t為何值時(shí),AQP的面積為3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,D是等邊三角形ABC內(nèi)一點(diǎn),將線(xiàn)段AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°,得到線(xiàn)段AE,連接CD,BE.

(1)求證:∠AEB=∠ADC;

(2)連接DE,若ADC=105°,求BED的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,E,F分別是矩形ABCD的邊ADAB上的點(diǎn),若EF=EC,且EF⊥EC

1)求證:AE=DC

2)已知DC=,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線(xiàn)的對(duì)稱(chēng)軸與x軸交于點(diǎn)A.

1A的坐標(biāo)為 (用含a的代數(shù)式表示);

2)若拋物線(xiàn)與x軸交于PQ兩點(diǎn),且PQ=2,求拋物線(xiàn)的解析式.

3)點(diǎn)B的坐標(biāo)為,若該拋物線(xiàn)與線(xiàn)段AB恰有一個(gè)公共點(diǎn),結(jié)合函數(shù)圖象,直接寫(xiě)出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】書(shū)法是我國(guó)的文化瑰寶,研習(xí)書(shū)法能培養(yǎng)高雅的品格.某校為加強(qiáng)書(shū)法教學(xué),了解學(xué)生現(xiàn)有的書(shū)寫(xiě)能力,隨機(jī)抽取了部分學(xué)生進(jìn)行測(cè)試,測(cè)試結(jié)果分為優(yōu)秀、良好、及格、不及格四個(gè)等級(jí),分別用AB,C,D表示,并將測(cè)試結(jié)果繪制成如圖兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)根據(jù)統(tǒng)計(jì)圖中的信息解答以下問(wèn)題:

1)本次抽取的學(xué)生人數(shù)是   ,扇形統(tǒng)計(jì)圖中A所對(duì)應(yīng)扇形圓心角的度數(shù)是   

2)把條形統(tǒng)計(jì)圖補(bǔ)充完整.

3)若該學(xué)校共有2800人,等級(jí)達(dá)到優(yōu)秀的人數(shù)大約有多少?

4A等級(jí)的4名學(xué)生中有3名女生1名男生,現(xiàn)在需要從這4人中隨機(jī)抽取2人參加電視臺(tái)舉辦的中學(xué)生書(shū)法比賽,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法,求被抽取的2人恰好是1名男生1名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小陽(yáng)在如圖所示的扇形舞臺(tái)上沿O-M-N勻速行走,他從點(diǎn)O出發(fā),沿箭頭所示的方向經(jīng)過(guò)點(diǎn)M再走到點(diǎn)N,共用時(shí)70秒有一臺(tái)攝像機(jī)選擇了一個(gè)固定的位置記錄了小陽(yáng)的走路過(guò)程,設(shè)小陽(yáng)走路的時(shí)間為t單位:秒,他與攝像機(jī)的距離為y單位:米,表示y與t的函數(shù)關(guān)系的圖象大致如圖,則這個(gè)固定位置可能是圖中的

A點(diǎn)Q B點(diǎn)P C點(diǎn)M D點(diǎn)N

查看答案和解析>>

同步練習(xí)冊(cè)答案