解:(1)設(shè)OA所在直線的函數(shù)解析式為y=kx,
∵A(2,4),
∴2k=4,
∴k=2,
∴OA所在直線的函數(shù)解析式為y=2x.
(2)①∵頂點(diǎn)M的橫坐標(biāo)為m,且在線段OA上移動(dòng),
∴y=2m(0≤m≤2)
∴頂點(diǎn)M的坐標(biāo)為(m,2m)
∴拋物線函數(shù)解析式為y=(x-m)
2+2m
∴當(dāng)x=2時(shí),y=(2-m)
2+2m=m
2-2m+4(0≤m≤2)
∴點(diǎn)P的坐標(biāo)是(2,m
2-2m+4).
②∵PB=m
2-2m+4=(m-1)
2+3,
又∵0≤m≤2,
∴當(dāng)m=1時(shí),PB最短.
此時(shí)拋物線的解析式為y=(x-1)
2+2.
(3)由(2)②知:P(2,3),M(1,2);
則PM=
;
①PM=PN=
,則N
1(2,3+
),N
2(2,3-
);
②PM=MN,根據(jù)等腰三角形三線合一的性質(zhì)知:N
3(2,1);
③PN=PM,此時(shí)∠PMN
4=∠N
4PM=∠PM
3M,則:
△PMN
4∽△PN
3M,
得:PM
2=PN
4•PN
3,
即:PN
4=PM
2÷PN
3=1,
故N4(1,2);
綜上可知:符合要求的點(diǎn)N的坐標(biāo)為:
N
1(2,3+
);N
2(2,3-
);N
3(2,1);N
4(1,2).
(4)當(dāng)線段PB最短時(shí),此時(shí)拋物線的解析式為y=(x-1)
2+2,
①過(guò)P作直線L∥OA,設(shè)直線L:y=2x+h,
又P的橫坐標(biāo)為2,把x=2代入拋物線解析式得:y=3,
則把P的坐標(biāo)(2,3)代入得:4+h=3,解得:h=-1;
∴直線L:y=2x-1,聯(lián)立拋物線的解析式有:
,
解得
;
此時(shí)拋物線與直線L只有一個(gè)交點(diǎn)為P(2,3),故此種情況不成立;
②在點(diǎn)A的上方截取AD=AP,即D(2,5);
過(guò)D作直線L′∥OA,設(shè)直線L′:y=2x+h′,
則有:4+h′=5,h′=1;
∴直線L′:y=2x+1,聯(lián)立拋物線的解析式有:
,
解得
,
;
拋物線上存在點(diǎn)Q
1(2+
,5+2
),Q
2(2-
,5-2
),使△QMA與△PMA的面積相等.
分析:(1)由于直線OA是正比例函數(shù),根據(jù)點(diǎn)A的坐標(biāo),即可確定該直線的解析式.
(2)①根據(jù)直線OA的解析式,可用m表示出點(diǎn)M的坐標(biāo),進(jìn)而可表示出平移后的拋物線解析式,然后將x=2代入平移后的拋物線解析式中,即可得到點(diǎn)P的坐標(biāo);
②點(diǎn)P的縱坐標(biāo)即可為線段PB的長(zhǎng),可利用配方法求得PB的最小值及對(duì)應(yīng)的m的值,從而確定平移后的拋物線解析式.
(3)根據(jù)(2)②的結(jié)論,可求得點(diǎn)P、M的坐標(biāo),進(jìn)而可得PM的長(zhǎng),若△PMN是等腰三角形,則有三種情況需要考慮:
①PM=PN,此時(shí)將P點(diǎn)坐標(biāo)向上或向下平移PM個(gè)單位即可得到點(diǎn)N的坐標(biāo);
②PM=MN,此時(shí)點(diǎn)M的縱坐標(biāo)為P、N縱坐標(biāo)和的一半,由此可求得點(diǎn)N的坐標(biāo);
③PN=MN,此時(shí)N在線段PM的垂直平分線上,利用②得到的等腰三角形,可構(gòu)建相似三角形求出點(diǎn)N的坐標(biāo).
(4)若△QMA的面積與△PMA的面積相等,則P、Q到直線OA的距離相等,此題分兩種情況討論:
①過(guò)P作平行于OA的直線,易求得此平行線的解析式,聯(lián)立拋物線的解析式即可求得點(diǎn)Q的坐標(biāo);
②在A點(diǎn)的上方截取AD=PA,同①過(guò)D作直線OA的平行線,先求出此平行線的解析式,然后聯(lián)立拋物線的解析式求得點(diǎn)Q的坐標(biāo).
點(diǎn)評(píng):此題主要考查了二次函數(shù)圖象的平移、解析式的確定、函數(shù)圖象上點(diǎn)的坐標(biāo)意義、等腰三角形的構(gòu)成條件、三角形面積的計(jì)算方法等重要知識(shí)點(diǎn),綜合性強(qiáng),難度較大.