【題目】如圖,AB是⊙O的直徑,點(diǎn)C是的中點(diǎn),⊙O的切線BD交AC的延長(zhǎng)線于點(diǎn)D,E是OB的中點(diǎn),CE的延長(zhǎng)線交切線BD于點(diǎn)F,AF交⊙O于點(diǎn)H,連接BH.
(1)求證:AC=CD;
(2)若OC=,求BH的長(zhǎng).
【答案】
(1)
證明:連接OC,
∵C是的中點(diǎn),AB是⊙O的直徑,
∴CO⊥AB,
∵BD是⊙O的切線,
∴BD⊥AB,
∴OC∥BD,
∵OA=OB,
∴AC=CD;
(2)
解:∵E是OB的中點(diǎn),
∴OE=BE,
在△COE和△FBE中,
,
∴△COE≌△FBE(ASA),
∴BF=CO,
∵OB=,
∴BF=,
∴AF==5,
∵AB是直徑,
∴BH⊥AF,
∴△ABF∽△BHF,
∴=,
∴ABBF=AFBH,
∴BH===2.
【解析】(1)連接OC,由C是的中點(diǎn),AB是⊙O的直徑,則CO⊥AB,再由BD是⊙O的切線,得BD⊥AB,從而得出OC∥BD,即可證明AC=CD;
(2)根據(jù)點(diǎn)E是OB的中點(diǎn),得OE=BE,可證明△COE≌△FBE(ASA),則BF=CO,即可得出BF=2,由勾股定理得出AF=,由AB是直徑,得BH⊥AF,可證明△ABF∽△BHF,即可得出BH的長(zhǎng).
【考點(diǎn)精析】利用切線的性質(zhì)定理對(duì)題目進(jìn)行判斷即可得到答案,需要熟知切線的性質(zhì):1、經(jīng)過(guò)切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過(guò)切點(diǎn)垂直于切線的直線必經(jīng)過(guò)圓心3、圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列事件屬于必然事件的是( )
A.姚明罰球線上投籃,投進(jìn)籃筐
B.某種彩票的中獎(jiǎng)率為 ,購(gòu)買100張彩票一定中獎(jiǎng)
C.擲一次骰子,向上一面的點(diǎn)數(shù)是6
D.367人中至少有兩人的生日在同一天
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一個(gè)18米高的樓頂上有一信號(hào)塔DC,李明同學(xué)為了測(cè)量信號(hào)塔的高度,在地面的A處測(cè)的信號(hào)塔下端D的仰角為30°,然后他正對(duì)塔的方向前進(jìn)了18米到達(dá)地面的B處,又測(cè)得信號(hào)塔頂端C的仰角為60°,CD⊥AB與點(diǎn)E,E、B、A在一條直線上.請(qǐng)你幫李明同學(xué)計(jì)算出信號(hào)塔CD的高度(結(jié)果保留整數(shù),≈1.7,≈1.4 ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=x2+bx+c經(jīng)過(guò)A(﹣1,0),B(3,0)兩點(diǎn),與y軸相交于點(diǎn)C,該拋物線的頂點(diǎn)為點(diǎn)D
(1)求該拋物線的解析式及點(diǎn)D的坐標(biāo)。
(2)連接AC,CD,BD,BC,設(shè)△AOC,△BOC,△BCD的面積分別為S1 , S2和S3 , 用等式表示S1 , S2 , S3之間的數(shù)量關(guān)系,并說(shuō)明理由
(3)假設(shè)存在,設(shè)點(diǎn)M的坐標(biāo)為(m,0),表示出MA的長(zhǎng),根據(jù)MN∥BC,得到比例式求出AN,根據(jù)△AMN∽△ACM,得到比例式求出m,得到點(diǎn)M的坐標(biāo),求出BC的解析式,根據(jù)MN∥BC,設(shè)直線MN的解析式,求解即可
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某超市舉行店慶活動(dòng),對(duì)甲、乙兩種商品實(shí)行打折銷售,打折前,購(gòu)買2件甲商品和3件乙商品需要180元;購(gòu)買1件甲商品和4件乙商品需要200元,而店慶期間,購(gòu)買10件甲商品和10件乙商品僅需520元,這比打折前少花多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果關(guān)于x的分式方程 ﹣3= 有負(fù)分?jǐn)?shù)解,且關(guān)于x的不等式組 的解集為x<﹣2,那么符合條件的所有整數(shù)a的積是( )
A.﹣3
B.0
C.3
D.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】近期豬肉價(jià)格不斷走高,引起了民眾與政府的高度關(guān)注.當(dāng)市場(chǎng)豬肉的平均價(jià)格每千克達(dá)到一定的單價(jià)時(shí),政府將投入儲(chǔ)備豬肉以平抑豬肉價(jià)格.
(1)從今年年初至5月20日,豬肉價(jià)格不斷走高,5月20日比年初價(jià)格上漲了60%.某市民在今年5月20日購(gòu)買2.5千克豬肉至少要花100元錢,那么今年年初豬肉的最低價(jià)格為每千克多少元?
(2)5月20日,豬肉價(jià)格為每千克40元.5月21日,某市決定投入儲(chǔ)備豬肉并規(guī)定其銷售價(jià)在每千克40元的基礎(chǔ)上下調(diào)a%出售.某超市按規(guī)定價(jià)出售一批儲(chǔ)備豬肉,該超市在非儲(chǔ)備豬肉的價(jià)格仍為每千克40元的情況下,該天的兩種豬肉總銷量比5月20日增加了a%,且儲(chǔ)備豬肉的銷量占總銷量的 ,兩種豬肉銷售的總金額比5月20日提高了 a%,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把一個(gè)菱形繞著它的對(duì)角線的交點(diǎn)旋轉(zhuǎn)90°,旋轉(zhuǎn)前后的兩個(gè)菱形構(gòu)成一個(gè)“星形”(陰影部分),若菱形的一個(gè)內(nèi)角為60°,邊長(zhǎng)為2,則該“星形”的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=a(x+1)2﹣3與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C(0,﹣ ),頂點(diǎn)為D,對(duì)稱軸與x軸交于點(diǎn)H,過(guò)點(diǎn)H的直線l交拋物線于P,Q兩點(diǎn),點(diǎn)Q在y軸的右側(cè).
(1)求a的值及點(diǎn)A,B的坐標(biāo);
(2)當(dāng)直線l將四邊形ABCD分為面積比為3:7的兩部分時(shí),求直線l的函數(shù)表達(dá)式;
(3)當(dāng)點(diǎn)P位于第二象限時(shí),設(shè)PQ的中點(diǎn)為M,點(diǎn)N在拋物線上,則以DP為對(duì)角線的四邊形DMPN能否為菱形?若能,求出點(diǎn)N的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com