如圖1,與圖1中的三角形相比,圖2中的三角發(fā)生的變化是(    )

A、向左平移3個(gè)單位長度    B、向左平移1個(gè)單位長度

C、向上平移3個(gè)單位長度    D、向下平移1個(gè)單位長度

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,直線y=-
1
2
x+b(b>0)
分別交x軸,y軸于A,B兩點(diǎn),以O(shè)A,OB為邊作矩形OACB,D為BC的中點(diǎn).以M(4,0),N(8,0)為斜邊端精英家教網(wǎng)點(diǎn)作等腰直角三角形PMN,點(diǎn)P在第一象限,設(shè)矩形OACB與△PMN重疊部分的面積為S.
(1)求點(diǎn)P的坐標(biāo).
(2)若點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn)為P′,試求經(jīng)過M、N、P′三點(diǎn)的拋物線的解析式.
(3)當(dāng)b值由小到大變化時(shí),求S與b的函數(shù)關(guān)系式.
(4)若在直線y=-
1
2
x+b(b>0)
上存在點(diǎn)Q,使∠OQM等于90°,請(qǐng)直接寫出b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,直線AC:y=
4
3
x+8
與x軸交于點(diǎn)A,與y軸交于點(diǎn)C,拋物線y=ax2+bx+c過點(diǎn)A、點(diǎn)C,且與x軸的另一交點(diǎn)為B(x0,0),其中x0>0,又點(diǎn)P是拋物線的對(duì)稱軸l上一動(dòng)點(diǎn).
(1)求點(diǎn)A的坐標(biāo),并在圖1中的l上找一點(diǎn)P0,使P0到點(diǎn)A與點(diǎn)C的距離之和最小;
(2)若△PAC周長的最小值為10+2
41
,求拋物線的解析式及頂點(diǎn)N的坐標(biāo);
(3)如圖2,在線段CO上有一動(dòng)點(diǎn)M以每秒2個(gè)單位的速度從點(diǎn)C向點(diǎn)O移動(dòng)(M不與端點(diǎn)C、O重合),過點(diǎn)M作MH∥CB交x軸于點(diǎn)H,設(shè)M移動(dòng)的時(shí)間為t秒,試把△P0HM的面積S表示成時(shí)間t的函數(shù),當(dāng)t為何值時(shí),S有最大值,并求出最大值;
(4)在(3)的條件下,當(dāng)S=
75
32
時(shí),過M作x軸的平行線交拋物線于E、F兩點(diǎn),問:過E、F、C三點(diǎn)的圓與直線CN能否相切于點(diǎn)C?請(qǐng)證明你的結(jié)論.(備用圖圖3)
精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•德化縣模擬)如圖,已知:△ABC是邊長為2
3
的等邊三角形,四邊形DEFG是邊長為3的正方形.現(xiàn)將等邊△ABC和正方形DEFG按如圖1的方式擺放,使點(diǎn)C與點(diǎn)E重合,點(diǎn)B、C(E)、F在同一條直線上,△ABC從圖1的位置出發(fā),以每秒
1
2
個(gè)單位長度的速度沿EF方向向右勻速運(yùn)動(dòng),當(dāng)點(diǎn)C與點(diǎn)F重合時(shí)暫停運(yùn)動(dòng),設(shè)△ABC的運(yùn)動(dòng)時(shí)間為t秒(t≥0).
(1)在運(yùn)動(dòng)過程中,設(shè)AC交DE于點(diǎn)P,PE=
3
2
3
2
t;
(2)在整個(gè)運(yùn)動(dòng)過程中,設(shè)等邊△ABC和正方形DEFG重疊部分的面積為S,
①當(dāng)t為何值時(shí),S等于△ABC面積的三分之一;
②當(dāng)點(diǎn)A在DG上運(yùn)動(dòng)時(shí),請(qǐng)求出S與t之間的函數(shù)關(guān)系式,并指出t的取值范圍;
(3)如圖2,若四邊形DEFG是邊長為2
3
的正方形,△ABC的移動(dòng)速度為每秒
3
2
個(gè)單位長度,其余條件保持不變.△ABC開始移動(dòng)的同時(shí),Q點(diǎn)從F點(diǎn)開始,沿折線F-G-D以每秒
3
個(gè)單位長度開始移動(dòng),△ABC停止運(yùn)動(dòng)時(shí),Q點(diǎn)也停止運(yùn)動(dòng).設(shè)在運(yùn)動(dòng)過程中,DE交折線B-A-C于P點(diǎn),則是否存在t的值,使得PC與EQ互相垂直?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,函數(shù)y=x的圖象l是第一、三象限的角平分線.
(1)實(shí)驗(yàn)與探究:由圖觀察易知A(0,2)關(guān)于直線l的對(duì)稱點(diǎn)A′的坐標(biāo)為(2,0),請(qǐng)?jiān)趫D中分別標(biāo)明B(5,3)、C(-2,5)關(guān)于直線l的對(duì)稱點(diǎn)B′、C′的位置,并寫出它們的坐標(biāo):B′
(3,5)
(3,5)
、C′
(5,-2)
(5,-2)
;
(2)歸納與發(fā)現(xiàn):結(jié)合圖形觀察以上三組點(diǎn)的坐標(biāo),你會(huì)發(fā)現(xiàn):坐標(biāo)平面內(nèi)任一點(diǎn)P(m,n)關(guān)于第一、三象限的角平分線l的對(duì)稱點(diǎn)P′的坐標(biāo)為
(n,m)
(n,m)
;
(3)類比與猜想:坐標(biāo)平面內(nèi)任一點(diǎn)P(m,n)關(guān)于第二、四象限的角平分線的對(duì)稱點(diǎn)P′的坐標(biāo)為
(-n,-m)
(-n,-m)
;
(4)運(yùn)用與拓廣:已知兩點(diǎn)D(0,-3)、E(-1,-4),試在第一、三象限的角平分線l上確定一點(diǎn)Q,使點(diǎn)Q到D、E兩點(diǎn)的距離之和最小,并求出Q點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,一動(dòng)點(diǎn)P(x,y)從M(1,0)出發(fā),沿由A(-1,1),B(-1,-1),C(1,-1),D(1,1)四點(diǎn)組成的正方形邊線(如圖①)按一定方向運(yùn)動(dòng).圖②是P點(diǎn)運(yùn)動(dòng)的路程s(個(gè)單位)與運(yùn)動(dòng)時(shí)間21世紀(jì)教育網(wǎng) -- 中國最大型、最專業(yè)的中小學(xué)教育資源門戶網(wǎng)站(秒)之間的函數(shù)圖象,圖③是P點(diǎn)的縱坐標(biāo)y與P點(diǎn)運(yùn)動(dòng)的路程s之間的函數(shù)圖象的一部分.

21世紀(jì)教育網(wǎng) -- 中國最大型、最專業(yè)的中小學(xué)教育資源門戶網(wǎng)站

(1)s與t之間的函數(shù)關(guān)系式是:           ;

(2)與圖③相對(duì)應(yīng)的P點(diǎn)的運(yùn)動(dòng)路徑是:       ;P點(diǎn)出發(fā)     秒首次到達(dá)點(diǎn)B;

(3)寫出當(dāng)3≤s≤8時(shí),y與s之間的函數(shù)關(guān)系式,并在圖③中補(bǔ)全函數(shù)圖象.

解題思路:(1)由圖②知,s與t是正比例函數(shù)關(guān)系,用“待定系數(shù)法”可求的關(guān)系式;(2)結(jié)合題意和圖③的函數(shù)圖象,P點(diǎn)的運(yùn)動(dòng)路徑是:M→D→A→N;從(1)中知點(diǎn)P的運(yùn)動(dòng)速度,可以求出點(diǎn)P運(yùn)動(dòng)到點(diǎn)B需要的時(shí)間;(3)對(duì)3≤s≤8的范圍,又需要分三個(gè)時(shí)間段分別求解.

查看答案和解析>>

同步練習(xí)冊答案