【題目】陽陽超市以每件10元的價(jià)格購進(jìn)了一批玩具,定價(jià)為20元時(shí),平均每天可售出80個(gè).經(jīng)調(diào)查發(fā)現(xiàn),玩具的單價(jià)每降1元,每天可多售出40個(gè);玩具的單價(jià)每漲1元,每天要少售出5個(gè).如何定價(jià)才能使每天的利潤最大?求出此時(shí)的最大利潤.
【答案】當(dāng)定價(jià)為16元時(shí),每天的利潤最大,最大利潤是1440元
【解析】
分降價(jià)和漲價(jià)兩種情形,根據(jù)利潤公式“”列出等式,再根據(jù)二次函數(shù)的性質(zhì)求解即可.
由題意,需分降價(jià)和漲價(jià)兩種情形:
(1)在降價(jià)的情況下,設(shè)每件降價(jià)元,則每天的利潤為元
則
整理得:
由二次函數(shù)圖象的性質(zhì)可得:當(dāng)時(shí),取得最大值1440
故當(dāng)定價(jià)為16元時(shí),才能使每天的利潤最大,最大利潤為1440元
(2)在漲價(jià)的情況下,設(shè)每件漲價(jià)元,則每天的利潤為元
則
整理得:
由二次函數(shù)圖象的性質(zhì)可得:當(dāng)時(shí),取得最大值845
故當(dāng)定價(jià)為23元時(shí),才能使每天的利潤最大,最大利潤為845元
綜上,當(dāng)定價(jià)為16元時(shí),才能使每天的利潤最大,最大利潤為1440元
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸、軸分別相交于點(diǎn)B、C,經(jīng)過B、C兩點(diǎn)的拋物線與軸的另一個(gè)交點(diǎn)為A,頂點(diǎn)為P,且對稱軸為直線。點(diǎn)G是拋物線位于直線下方的任意一點(diǎn),連接PB、GB、GC、AC .
(1)求該拋物線的解析式;
(2)求△GBC面積的最大值;
(3)連接AC,在軸上是否存在一點(diǎn)Q,使得以點(diǎn)P,B,Q為頂點(diǎn)的三角形與△ABC相似?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新華書店銷售一個(gè)系列的兒童書刊,每套進(jìn)價(jià)100元,定價(jià)為140元,一天可以銷售20套.為了擴(kuò)大銷售,增加盈利,減少庫存,書店決定采取降價(jià)措施.若一套書每降價(jià)0.5元,平均每天可多售出1套.設(shè)每套書降價(jià)x元時(shí),書店一天可獲利潤y元.
(1)求出y與x的函數(shù)關(guān)系式;
(2)該書店要獲得最大利潤,售價(jià)應(yīng)定為每套多少元?
(3)小靜說:“當(dāng)某天的利潤最大時(shí),當(dāng)天的銷售額也最大.”你認(rèn)為對嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O是△ABC的外接圓,AD是⊙O的直徑,且BD=BC,延長AD到E,且有∠EBD=∠CAB.
(1)如圖1,若BD=,AC=6
A.求證:BE為圓O的切線
B.求DE的長
(2)如圖2,連結(jié)CD交AB于點(diǎn)F,若BD=,CF=3,求圓O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將坐標(biāo)原點(diǎn)O沿x軸向左平移2個(gè)單位長度得到點(diǎn)A,過點(diǎn)A作y軸的平行線交反比例函數(shù)的圖象于點(diǎn)B,AB=.
(1)求反比例函數(shù)的解析式;
(2)若P(, )、Q(, )是該反比例函數(shù)圖象上的兩點(diǎn),且時(shí), ,指出點(diǎn)P、Q各位于哪個(gè)象限?并簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】網(wǎng)上購物已經(jīng)成為人們常用的一種購物方式,售后評價(jià)特別引人關(guān)注,消費(fèi)者在網(wǎng)店購買某種商品后,對其有
“好評”、“中評”、“差評”三種評價(jià),假設(shè)這三種評價(jià)是等可能的.
(1)小明對一家網(wǎng)店銷售某種商品顯示的評價(jià)信息進(jìn)行了統(tǒng)計(jì),并列出了兩幅不完整的統(tǒng)計(jì)圖.
利用圖中所提供的信息解決以下問題:
①小明一共統(tǒng)計(jì)了 個(gè)評價(jià);
②請將圖1補(bǔ)充完整;
③圖2中“差評”所占的百分比是 ;
(2)若甲、乙兩名消費(fèi)者在該網(wǎng)店購買了同一商品,請你用列表格或畫樹狀圖的方法幫助店主求一下兩人中至少有一個(gè)給“好評”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:
①b2﹣4ac<0;②方程ax2+bx+c=0的兩個(gè)根是x1=﹣1,x2=3;③3a+c=0;
④當(dāng)y>0時(shí),x的取值范圍是﹣1<x<3;⑤當(dāng)x>0時(shí),y隨x增大而減。
其中結(jié)論正確的個(gè)數(shù)是( )
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程(k﹣1)x2+(2k+1)x+k=0.
(1)依據(jù)k的取值討論方程解的情況.
(2)若方程有一根為x=﹣2,求k的值及方程的另一根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l1∥l2∥l3∥l4,相鄰兩條平行直線間的距離都是1,如果正方形ABCD的四個(gè)頂點(diǎn)分別在四條直線上,則cosα=( 。
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com