【題目】如圖1,已知線段,點C為線段AB上的一動點,點D、E分別是ACBC中點.

,求DE的長;

試說明無論AC取何值不超過,DE的長不變;

如圖2,已知,過角的內(nèi)部一點C畫射線OC,若ODOE分別平分,試說明的度數(shù)與射線OC的位置無關.

【答案】1DE6cm;(2)見解析;(3)見解析

【解析】

,點DE分別是ACBC的中點,即可推出

,然后通過點D、E分別是ACBC的中點,即可推出,即可推出結(jié)論;

由若OD、OE分別平分,即可推出,即可推出的度數(shù)與射線OC的位置無關.

,點D、E分別是ACBC的中點,

;

,

AC中點,EBC中點,

,

,

無論a取何值不超過的長不變;

,,

平分,OE平分

,,

,

,與OC位置無關.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,若∠BOD=138°,則它的一個外角∠DCE等于( )

A.69°
B.42°
C.48°
D.38°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某制衣廠某車間計劃用10天加工一批出口童裝和成人裝共360,該車間的加工能力是:每天能單獨加工童裝45件或成人裝30件。

(1)該車間應安排幾天加工童裝,幾天加工成人裝,才能如期完成任務?

(2)若加工童裝一件可獲利80, 加工成人裝一件可獲利120, 那么該車間加工完這批服裝后,共可獲利多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,下列說法不正確的是(   )

A. AC=BD時,四邊形ABCD是矩形

B. AB=BC時,四邊形ABCD是菱形

C. AC⊥BD時,四邊形ABCD是菱形

D. ∠DAB=90°時,四邊形ABCD是正方形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠BAC=90°,AH⊥BC于點H,過點C作CD⊥AC,連接AD,點M為AC上一點,且AM=CD,連接BM交AH于點N,交AD于點E.

(1)若AB=3,AD= ,求△BMC的面積;
(2)點E為AD的中點時,求證:AD=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學學生步行到郊外旅行,七年級班學生組成前隊,步行速度為4千米小時,七班的學生組成后隊,速度為6千米小時;前隊出發(fā)1小時后,后隊才出發(fā),同時后隊派一名聯(lián)絡員騎自行車在兩隊之間不間斷地來回聯(lián)絡,他騎車的速度為10千米小時.

后隊追上前隊需要多長時間?

后隊追上前隊的時間內(nèi),聯(lián)絡員走的路程是多少?

七年級班出發(fā)多少小時后兩隊相距2千米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖為K90的化學賽道,其中助滑坡AB長90米,坡角a=40°,一個曲面平臺BCD連接了助滑坡AB與著陸坡,某運動員在C點飛向空中,幾秒之后落在著陸坡上的E處,已知著陸坡DE的坡度i=1: ,此運動員成績?yōu)镈E=85.5米,BD之間的垂直距離h為1米,則該運動員在此比賽中,一共垂直下降了( )米.(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.76,tan40°≈0.84,結(jié)果保留一位小數(shù))

A.101.4
B.101.3
C.100.4
D.100.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】完成下面的證明.

已知,如圖所示,BCEAFE是直線,

AB∥CD,∠1=∠2,∠3=∠4

求證:AD∥BE

證明:∵ AB∥CD (已知)

∴ ∠4 =∠ ( )

∵ ∠3 =∠4 (已知)

∴ ∠3 =∠ ( )

∵∠1 =∠2 (已知)

∴∠1+∠CAF =∠2+ ∠CAF ( )

即: =∠

∴ ∠3 =∠ ( )

∴ AD∥BE ( )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】新興服裝廠生產(chǎn)一種夾克和T恤,夾克每件定價元,T恤每件定價.廠方在開展促銷活動期間,向客戶提供兩種優(yōu)惠方案:買一件夾克送一件T恤;夾克和T恤都按定價的付款.現(xiàn)某客戶要到該服裝廠購買夾克件,T件(.

1)若該客戶按方案購買,夾克需付款________元,T恤需付款________元(用含的式子表示);若該客戶按方案購買,夾克需付款______元,T恤需付款______元(用含的式子表示);

2)若,通過計算說明按方案、方案哪種方案購買較為合算?

查看答案和解析>>

同步練習冊答案