有一塊如四邊形ABCD的土地,測得AB=26m,BC=10m,CD=5m,頂點B、CAD的距離分別為10m4m,則這塊土地的面積為_____________(如圖所示)

 

答案:
解析:

182m2

 


提示:

根據(jù)直角三角形的勾股定理容易求得AN=24m,NM=8m,MD=3m,所以這塊土地的面積為:=182m2。

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列短文:
如圖,G是四邊形ABCD對角線AC上一點,過G作GE∥CD交AD于E,GF∥CB交AB于F,若EG=FG,則有BC=CD成立,同時可知四邊形ABCD與四邊形AFGE相似.
精英家教網(wǎng)
解答問題:
(1)有一塊三角形空地(如圖△ABC),BC鄰近公路,現(xiàn)需在此空地上修建一個正方形廣場,其余地為草坪,要使廣場一邊靠公路,且其面積最大,如何設(shè)計,請你在下面圖中畫出此廣場正方形.(尺規(guī)作圖,不寫作法)
(2)銳角△ABC是一塊三角形余料,邊AB=130mm,BC=150mm,AC=140mm,要把它加工成正方形零件,使正方形的一邊在三角形的一邊上,其余兩個頂點分別在另外兩條邊上,且剪去正方形零件后剩下的邊角料較少,這個正方形零件的邊長是多少?你能得出什么結(jié)論,并證明你的結(jié)論.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

23、閱讀理解:如圖(1),已知直線m∥n,A、B 為直線n上兩點,C、D為直線m上兩點,容易證明:△ABC的面積=△ABD的面積.
根據(jù)上述內(nèi)容解決以下問題:已知正方形ABCD的邊長為4,G是邊CD上一點,以CG為邊作正方形GCEF.
(1)如圖(2),當(dāng)點G與點D重合時,△BDF的面積為
8

(2)如圖(3),當(dāng)點G是CD的中點時,△BDF的面積為
8

(3)如圖(4),當(dāng)CG=a時,則△BDF的面積為
8
,并說明理由.
探索應(yīng)用:小張家有一塊正方形的土地如圖(5),由于修建高速公路被占去一塊三角形BCP區(qū)域.現(xiàn)決定在DP右側(cè)補給小張一塊土地,補償后,土地變?yōu)樗倪呅蜛BMD,要求補償后的四邊形ABMD的面積與原來形正方形ABCD的面積相等且M在射線BP上,請你在圖中畫出M點的位置,并簡要敘述做法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)已知:如圖(1)AD是△ABC中BC邊的中線,則S△ABD=S△ACD,依據(jù)是
等底同高
等底同高

(2)如圖2梯形ABCD中,AD∥BC,對角線AC、BD交于點O,請找出圖中三對面積相等的三角形,
△ADC和△ADB;△ABC和△DBC;△AOB和△DOC
△ADC和△ADB;△ABC和△DBC;△AOB和△DOC

(3)李明家有一塊四邊形田地,如圖3所示.AE是一條小路,它把田地分成了面積相等的兩部分(小路寬忽略不計).在CD邊上點F處有一口水井,為方便灌溉田地,李明打算過點F修一條筆直的水渠,且要求水渠也把整個田地分成面積相等的兩部分(水渠寬忽略不計).請你幫李明設(shè)計出修水渠的方案,作圖并寫出設(shè)計方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年浙教版初中數(shù)學(xué)八年級下 5.6三角形的中位線練習(xí)卷(解析版) 題型:解答題

某廠有一塊如圖所示的△ABC鐵板,根據(jù)需要,現(xiàn)要把它加工成一個平行四邊形鐵板.要把材料完全利用起來,可怎樣加工?請你利用學(xué)過的知識幫助工人師傅把切割的線用虛線畫出來,并指出加工后的平行四邊形.能否將此三角形鐵板加工成長方形?請予以探索.

  

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:同步題 題型:操作題

某廠有一塊如圖所示的△ABC鐵板,根據(jù)需要,現(xiàn)要把它加工成一個平行四邊形鐵板,要把材料完全利用起來,可怎樣加工?請你利用學(xué)過的知識幫助工人師傅把切割的線用虛線畫出來,并指出加工后的平行四邊形,能否將此三角形鐵板加工成長方形?請予以探索。 

查看答案和解析>>

同步練習(xí)冊答案