【題目】如圖1,點O為直線AB上一點,過點O作射線OC,使∠AOC=60°,將一把直角三角尺的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.

(1)將圖1中的三角尺繞點O逆時針旋轉(zhuǎn)至圖2,使點NOC的反向延長線上,請直接寫出圖中∠MOB的度數(shù)

(2)將圖1中的三角尺繞點O逆時針旋轉(zhuǎn)至圖3,使一邊OM∠BOC的內(nèi)部,且恰好平分∠BOC,求∠CON的度數(shù)

(3)將圖1中的三角尺繞點O順時針旋轉(zhuǎn)至圖4,使ON∠AOC的內(nèi)部,請?zhí)骄?/span>∠AOM∠NOC之間的數(shù)量關(guān)系,并說明理由.

【答案】(1)30°;(2)150°;(3)∠AOM﹣∠NOC=30°,理由見解析

【解析】

(1) 根據(jù)對頂角求出∠BON,代入∠BOM=MON-BON求出即可;

(2) 求出么BOC=, 根據(jù)角平分線定義請求出∠COM=BOM=, 代入∠CON=MON+COM求出即可;

(3)用∠AOM和∠CON表示出∠AON,然后列出方程整理即可得解.

(1)如圖2,∵∠AOC=60°,

∴∠BON=∠AOC=60°,

∵∠MON=90°,

∴∠BOM=∠MON﹣∠BON=30°,

(2)∵∠AOC=60°,

∴∠BOC=180°﹣∠AOC=120°,

OM平分∠BOC,

∴∠COM=∠BOM=60°,

∵∠MON=90°,

∴∠CON=∠MON+∠COM=90°+60°=150°;

(3)∠AOM﹣∠NOC=30°,

理由是:∵∠MON=90°,∠AOC=60°,

∴∠AON=90°﹣∠AOM,

∠AON=60°﹣∠NOC,

∴90°﹣∠AOM=60°﹣∠NOC,

∴∠AOM﹣∠NOC=30°,

AOM與NOC之間的數(shù)量關(guān)系為:∠AOM﹣∠NOC=30°.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】下圖是某同學在沙灘上用石子擺成的小房子.觀察圖形的變化規(guī)律,第6個小房子用的石子數(shù)量為 ( )

A. 87 B. 77 C. 70 D. 60

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點O為直線AB上一點,過點O作射線OC,使∠BOC=112°.將一直角三角板的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.

(1)將圖1中的三角板繞點O逆時針旋轉(zhuǎn)至圖2,使一邊OM在∠BOC的內(nèi)部,且恰好平分∠BOC,問:直線ON是否平分∠AOC?請說明理由;

(2)將圖1中的三角板繞點O按每秒4°的速度沿逆時針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,第t秒時,直線ON恰好平分銳角∠AOC,則t的值為多少?

(3)將圖1中的三角板繞點O順時針旋轉(zhuǎn)至圖3,使ON在∠AOC的內(nèi)部,請?zhí)骄浚骸?/span>AOM與∠NOC之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,O為坐標原點,△ABC的邊BC在y軸的正半軸上,點A在x軸的正半軸上,點C的坐標為(0,8),將△ABC沿直線AB折疊,點C落在x軸的負半軸D(﹣4,0)處.

(1)求直線AB的解析式;
(2)點P從點A出發(fā)以每秒4 個單位長度的速度沿射線AB方向運動,過點P作PQ⊥AB,交x軸于點Q,PR∥AC交x軸于點R,設(shè)點P運動時間為t(秒),線段QR長為d,求d與t的函數(shù)關(guān)系式(不要求寫出自變量t的取值范圍);

(3)在(2)的條件下,點N是射線AB上一點,以點N為圓心,同時經(jīng)過R、Q兩點作⊙N,⊙N交y軸于點E,F(xiàn).是否存在t,使得EF=RQ?若存在,求出t的值,并求出圓心N的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校允許學生在同個系列的校服里選擇不同款式,新生入學后,學校就新生對校服款式選擇情況作了抽樣調(diào)查,調(diào)查分為款式A、BC、D四種,每位新生只能選擇一種款式,現(xiàn)將調(diào)查統(tǒng)計結(jié)果制成了如下兩幅不完整的統(tǒng)計圖,請結(jié)合這兩幅統(tǒng)計圖,回答下列問題:

1)在本次調(diào)查中,一共抽取了多少名新生,并補全條形統(tǒng)計圖;

2)若該校有847名新生,服裝廠已生產(chǎn)了270B款式的校服,請你按相關(guān)統(tǒng)計知識判斷是否還要繼續(xù)生產(chǎn)B款式的校服?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人同時從相距25千米的A地去B地,甲騎摩托車,乙騎自行車,甲的速度是乙的速度的3倍,甲到達B地后停留了30分鐘,然后從B地返回A地,在途中遇見了乙,此時距他們出發(fā)的時間剛好是1小時,則甲的速度是(  )

A. 20千米/小時 B. 60千米/小時

C. 25千米/小時 D. 75千米小時

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O是△ABC的內(nèi)切圓,切點為DE,F,ADBE的長為方程的兩個根,則△ABC的周長為 ______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=ax2+3與x軸的兩個交點分別為(m,0)和(n,0),則當x=m+n時,y的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A,B兩地相距450千米,兩地之間有一個加油站O,且AO=270千米,一輛轎車從A地出發(fā),以每小時90千米的速度開往B地,一輛客車從B地出發(fā),以每小時60千米的速度開往A地,兩車同時出發(fā),設(shè)出發(fā)時間為t小時.

(1)經(jīng)過幾小時兩車相遇?

(2)當出發(fā)2小時時,轎車和客車分別距離加油站O多遠?

(3)經(jīng)過幾小時,兩車相距50千米?

查看答案和解析>>

同步練習冊答案