【題目】在以為原點(diǎn)的平面直角坐標(biāo)系中,有不在坐標(biāo)軸上的兩個(gè)點(diǎn)、,設(shè)的坐標(biāo)為,點(diǎn)的坐標(biāo)

1)若與坐標(biāo)軸平行,則 ;

2)若、、滿足軸,垂足為軸,垂足為.

①求四邊形的面積;

②連、、,若的面積大于而不大于,求的取值范圍.

【答案】1;(2)①四邊形的面積為6;②.

【解析】

(1)根據(jù)M點(diǎn)的坐標(biāo)和N點(diǎn)的坐標(biāo),同時(shí)MN平行于坐標(biāo)軸,可以判斷MN 的值.(2)根據(jù)m、n、k的關(guān)系式求出m和n,再根據(jù)軸,垂足為,軸,垂足為,可判斷四邊形MEFN是梯形,最后根據(jù)數(shù)據(jù)算出即可.(3)根據(jù)的面積大于而不大于和①的四邊形面積,分類討論可得出m的取值范圍.

(1)M(m,2)N(n,4),并且MN平行于坐標(biāo)軸,橫坐標(biāo)相等,所以MN=2.

(2)①由題意可知m+3n=4k+2和m-2n=-k-3,解出m=k-1,n=k+1,因?yàn)?/span>軸,垂足為軸,垂足為,所以所圍成的四邊形為梯形,因?yàn)镸E=2,NF=4,所以EF的距離是n-m=2,因此S梯形MEFN=(2+4)×2÷2=6.

②因?yàn)?/span>的面積大于而不大于,由①可知S梯形MEFN=6,所以當(dāng)m=-1,n=1時(shí)SΔOME=4,當(dāng)m=0,n=1時(shí)SΔOME=2,所以當(dāng)時(shí),SΔOME大于而不大于4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某城市按以下規(guī)定收取每月的水費(fèi),用水不超過7噸,按每噸1.5元收費(fèi);若超過7噸,未超過部分仍按每噸1.5元收取,而超過部分則按每噸2.3元收費(fèi).

1)如果某用戶5月份水費(fèi)平均為每噸1.6元,那么該用戶5月份應(yīng)交水費(fèi)多少元?

2)如果某用戶5月份交水費(fèi)17.4元,那么該用戶5月份水費(fèi)平均每噸多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,,將△ABC以每秒2cm的速度沿所在直線向右平移,所得圖形對(duì)應(yīng)為△DEF,設(shè)平移時(shí)間為t秒,若要使成立,則的值為_____秒.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到EDC.若點(diǎn)A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是( 。

A. 55°B. 60°C. 65°D. 70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD與矩形EFGH在直線l的同側(cè),邊AD,EH在直線l上,且AD=5cm,EH=4cmEF=3cm.保持正方形ABCD不動(dòng),將矩形EFGH沿直線l左右移動(dòng),連接BFCG,則BF+CG的最小值為_____________cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在初三綜合素質(zhì)評(píng)定結(jié)束后,為了了解年級(jí)的評(píng)定情況,現(xiàn)對(duì)初三某班的學(xué)生進(jìn)行了評(píng)定等級(jí)的調(diào)查,繪制了如下男女生等級(jí)情況折線統(tǒng)計(jì)圖和全班等級(jí)情況扇形統(tǒng)計(jì)圖.

(1)調(diào)查發(fā)現(xiàn)評(píng)定等級(jí)為合格的男生有2人,女生有1人,則全班共有   名學(xué)生.

(2)補(bǔ)全女生等級(jí)評(píng)定的折線統(tǒng)計(jì)圖.

(3)根據(jù)調(diào)查情況,該班班主任從評(píng)定等級(jí)為合格和A的學(xué)生中各選1名學(xué)生進(jìn)行交流,請(qǐng)用樹形圖或表格求出剛好選中一名男生和一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若點(diǎn)(x1,y1),(x2,y2),(x3,y3)都是反比例函數(shù)y=﹣圖象上的點(diǎn),并且y1<0<y2<y3,則下列各式中正確的是( )

A.x1<x2<x3 B.x1<x3<x2

C.x2<x1<x3 D.x2<x3<x1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,求證:,請(qǐng)將證明過程填寫完整.

證明:∵(已知)

又∵

________

____________

______________

又∵(已知)

________________,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠ACB=90°AC=BC=4,MAB的中點(diǎn)D是射線BC上一個(gè)動(dòng)點(diǎn),連接AD,將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到線段AE,連接EDNED的中點(diǎn),連接ANMN

1)如圖1,當(dāng)BD=2時(shí),AN=___ __,NMAB的位置關(guān)系是____ _____;

2)當(dāng)4<BD<8時(shí),

①依題意補(bǔ)全圖2;

②判斷(1)中NMAB的位置關(guān)系是否發(fā)生變化,并證明你的結(jié)論;

3連接ME,在點(diǎn)D運(yùn)動(dòng)的過程中,當(dāng)BD的長(zhǎng)為何值時(shí),ME的長(zhǎng)最?最小值是多少?請(qǐng)直接寫出結(jié)果

查看答案和解析>>

同步練習(xí)冊(cè)答案