精英家教網 > 初中數學 > 題目詳情
(2010•南京)如圖,AB是⊙O的直徑,點D在⊙O上,∠DAB=45°,BC∥AD,CD∥AB.
(1)判斷直線CD與⊙O的位置關系,并說明理由;
(2)若⊙O的半徑為1,求圖中陰影部分的面積(結果保留π)

【答案】分析:(1)直線與圓的位置關系無非是相切或不相切,可連接OD,證OD是否與CD垂直即可.
(2)陰影部分的面積可由梯形OBCD和扇形OBD的面積差求得;扇形的半徑和圓心角已求得,那么關鍵是求出梯形上底CD的長,可通過證四邊形ABCD是平行四邊形,得出CD=AB,由此可求出CD的長,即可得解.
解答:解:(1)直線CD與⊙O相切.理由如下:
如圖,連接OD
∵OA=OD,∠DAB=45°,
∴∠ODA=45°
∴∠AOD=90°
∵CD∥AB
∴∠ODC=∠AOD=90°,即OD⊥CD
又∵點D在⊙O上,∴直線CD與⊙O相切;(4分)

(2)∵⊙O的半徑為1,AB是⊙O的直徑,
∴AB=2,
∵BC∥AD,CD∥AB
∴四邊形ABCD是平行四邊形
∴CD=AB=2
∴S梯形OBCD===;
∴圖中陰影部分的面積等于S梯形OBCD-S扇形OBD=-×π×12=-.(8分)
點評:此題主要考查了切線的判定、平行四邊形的判定和性質以及扇形的面積計算方法.不規(guī)則圖形的面積一定要注意分割成規(guī)則圖形的面積進行計算.
練習冊系列答案
相關習題

科目:初中數學 來源:2010年全國中考數學試題匯編《投影與視圖》(04)(解析版) 題型:選擇題

(2010•南京)如圖,夜晚,小亮從點A經過路燈C的正下方沿直線走到點B,他的影長y隨他與點A之間的距離x的變化而變化,那么表示y與x之間的函數關系的圖象大致為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源:2010年全國中考數學試題匯編《銳角三角函數》(08)(解析版) 題型:解答題

(2010•南京)如圖,小明欲利用測角儀測量樹的高度.已知他離樹的水平距離BC為10m,測角儀的高度CD為1.5m,測得樹頂A的仰角為33°.求樹的高度AB.
(參考數據:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)

查看答案和解析>>

科目:初中數學 來源:2010年江蘇省南京市中考數學試卷(解析版) 題型:選擇題

(2010•南京)如圖,夜晚,小亮從點A經過路燈C的正下方沿直線走到點B,他的影長y隨他與點A之間的距離x的變化而變化,那么表示y與x之間的函數關系的圖象大致為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源:2010年江蘇省南京市中考數學試卷(解析版) 題型:選擇題

(2010•南京)如圖,在平面直角坐標系中,菱形OABC的頂點C的坐標是(3,4),則頂點A、B的坐標分別是( )

A.(4,0)(7,4)
B.(4,0)(8,4)
C.(5,0)(7,4)
D.(5,0)(8,4)

查看答案和解析>>

科目:初中數學 來源:2010年江蘇省南京市中考數學試卷(解析版) 題型:選擇題

(2010•南京)如圖,下列各數中,數軸上點A表示的可能是( )

A.4的算術平方根
B.4的立方根
C.8的算術平方根
D.8的立方根

查看答案和解析>>

同步練習冊答案