【題目】將一盒足量的牛奶按如圖1所示倒入一個水平放置的長方體容器中,當容器中的牛奶剛好接觸到點P時停止倒入,圖2是它的平面示意圖,請根據(jù)圖中的信息解答下列問題:
(1)填空:AP= cm,PF= cm.
(2)求出容器中牛奶的高度CF.
【答案】(1)5,;(2)CF為(12﹣)cm.
【解析】
(1)解Rt△ABP,根據(jù)含30°角的直角三角形的性質(zhì)得出AP=AB=5cm,求出EP=cm,即可求出PF;
(2)先由EF∥AB,得出∠BPF=∠ABP=30°,再解Rt△BFP,得出BF=cm,那么CF=BC-BF=(12-)cm.
解:(1)在Rt△ABP中,∵∠APB=90°,∠ABP=30°,AB=10cm,
∴AP=AB=5cm,∠BAP=60°;
∴∠EAP=30°,
∴EP=AP=cm,
∴PF=10﹣=(cm);
故答案為:5,;
(2)∵EF∥AB,
∴∠BPF=∠ABP=30°,
又∵∠BFP=90°,
∴tan30°=,
∴BF=×=(cm).
∴CF=BC﹣BF=(12﹣)(cm).
即容器中牛奶的高度CF為(12﹣)cm.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,E是BC的中點,連接AE并延長交DC的延長線于點F.
(1)求證:AB=CF;
(2)連接DE,若AD=2AB,求證:DE⊥AF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰 Rt△ABC 中,AC=BC= 2,點 P 在以斜邊 AB 為直徑的半圓上,M 為 PC的中點.當點 P 沿半圓從點 A 運動至點 B 時,點 M 運動的路徑長是( )
A. 2 B. 2 C. π D. π
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,直線y=﹣x與反比例函數(shù)y=的圖象交于關(guān)于原點對稱的A,B兩點,已知A點的縱坐標是3.
(1)求反比例函數(shù)的表達式;
(2)將直線y=﹣x向上平移后與反比例函數(shù)在第二象限內(nèi)交于點C,如果△ABC的面積為48,求平移后的直線的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:若拋物線的頂點與x軸的兩個交點構(gòu)成的三角形是直角三角形,則這種拋物線被稱為:“直角拋物線”.如圖,直線l:y=x+b經(jīng)過點M(0,),一組拋物線的頂點B1(1,y1),B2(2,y2),B3(3,y3),…Bn(n,yn) (n為正整數(shù)),依次是直線l上的點,第一個拋物線與x軸正半軸的交點A1(x1,0)和A2(x2,0),第二個拋物線與x軸交點A2(x2,0)和A3(x3,0),以此類推,若x1=d(0<d<1),當d為_____時,這組拋物線中存在直角拋物線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果直線l把△ABC分割后的兩個部分面積相等,且周長也相等,那么就把直線l叫做△ABC的“完美分割線”,已知在△ABC中,AB=AC,△ABC的一條“完美分割線”為直線l,且直線l平行于BC,若AB=2,則BC的長等于_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在中,,,,點、分別在邊、射線上,且,過點作,垂足為點,聯(lián)結(jié),以、為鄰邊作平行四邊形,設(shè),平行四邊形的面積為.
(1)當平行四邊形為矩形時,求的正切值;
(2)當點在內(nèi),求關(guān)于的函數(shù)解析式,并寫出它的定義域;
(3)當過點且平行于的直線經(jīng)過平行四邊形一邊的中點時,直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,AD=1,點P在線段AB上運動,設(shè)AP=,現(xiàn)將紙片折疊,使點D與點P重合,得折痕EF(點E、F為折痕與矩形邊的交點),再將紙片還原.
(1)當=0時,折痕EF的長為 ;當點E與點A重合時,折痕EF的長為 ;
(2)請寫出使四邊形EPFD為菱形的的取值范圍,并求出當=2時菱形的邊長;
(3)令EF2=,當點E在AD、點F在BC上時,寫出與的函數(shù)關(guān)系式.當取最大值時,判斷△EAP與△PBF是否相似?若相似,求出的值;若不相似,請說明理由.溫馨提示:用草稿紙折折看,或許對你有所幫助哦!
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在邊長為12的正方形中,對角線、交于點,點、分別為、邊上的動點,且始終保持,連接交于點.
(1)求證:;
(2)若,求的值;
(3)在運動的過程中,是否存在最大值?若存在,請求出的最大值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com