如圖,拋物線y=-數(shù)學(xué)公式x2+數(shù)學(xué)公式x+1與y軸交于點A,對稱軸交x軸于點B,連AB,點P在y軸上,點Q在拋物線上,是否存在點P和Q,使四邊形ABPQ為矩形?若存在,求點Q的坐標(biāo).

解:存在點P(0,-4),Q(-2,-3),使四邊形ABPQ為矩形.
理由如下:令x=0,則y=1,
∴AO=1,
∵拋物線對稱軸為直線x=-=2,
∴OB=2,
∵四邊形ABPQ為矩形,
∴∠ABO+∠PBO=∠ABP=90°,
∵∠BAO+∠ABO=90°,
∴∠BAO=∠PBO,
又∵∠AOB=∠BOP=90°,
∴△AOB∽△BOP,
=,
=,
解得OP=4,
∴點P的坐標(biāo)為(0,-4),
∴AP的中點,即矩形的中心C的坐標(biāo)是(0,-1.5),
設(shè)點Q(x,y),則=0,=-1.5,
解得x=-2,y=-3,
∴點Q的坐標(biāo)為(-2,-3),
當(dāng)x=-2時,y=-×(-2)2+×(-2)+1=--+1=-4+1=-3,
∴點Q在拋物線y=-x2+x+1上,
故存在點P(0,-4),Q(-2,-3),使四邊形ABPQ為矩形.
分析:先令x=0,求出y的值得到AO的長度,根據(jù)對稱軸解析式求出OB的長度,根據(jù)矩形的四個角都是直角可得∠ABP=90°,然后求出∠BAO=∠PBO,從而得到△AOB和△BOP相似,利用相似三角形對應(yīng)邊成比例求出OP的長度,再根據(jù)矩形的對稱性求出矩形的中心C的坐標(biāo),然后求出點Q的坐標(biāo),再根據(jù)二次函數(shù)圖象上點的坐標(biāo)特征把點Q的坐標(biāo)代入拋物線解析式進(jìn)行驗證即可.
點評:本題是二次函數(shù)綜合題型,主要利用了矩形的性質(zhì),相似三角形的判定與性質(zhì),中心對稱的點的坐標(biāo)求出以及二次函數(shù)圖象上點的坐標(biāo)特征,利用中心對稱求出點Q的坐標(biāo)是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、已知:如圖,拋物線C1,C2關(guān)于x軸對稱;拋物線C1,C3關(guān)于y軸對稱.拋物線C1,C2,C3與x軸相交于A、B、C、D四點;與y相交于E、F兩點;H、G、M分別為拋物線C1,C2,C3的頂點.HN垂直于x軸,垂足為N,且|OE|>|HN|,|AB|≠|(zhì)HG|
(1)A、B、C、D、E、F、G、H、M9個點中,四個點可以連接成一個四邊形,請你用字母寫出下列特殊四邊形:菱形
AHBG
;等腰梯形
HGEF
;平行四邊形
EGFM
;梯形
DMHC
;(每種特殊四邊形只能寫一個,寫錯、多寫記0分)
(2)證明其中任意一個特殊四邊形;
(3)寫出你證明的特殊四邊形的性質(zhì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,拋物線交x軸于點A(-2,0),點B(4,0),交y軸于點C(0,4).
(1)求拋物線的解析式,并寫出頂點D的坐標(biāo);
(2)若直線y=x交拋物線于M,N兩點,交拋物線的對稱軸于點E,連接BC,EB,EC.試判斷△EBC的形狀,并加以證明;
(3)設(shè)P為直線MN上的動點,過P作PF∥ED交直線MN上方的拋物線于點F.問:在直線MN上是否存在點P,使得以P,E,D,F(xiàn)為頂點的四邊形是平行四邊形?若存在,請求出點P及相應(yīng)的點F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線的頂點坐標(biāo)為M(1,4),與x軸的一個交點是A(-1,0),與y軸交于點B,直線x=1交x軸于點N.
(1)求拋物線的解析式及點B的坐標(biāo);
(2)求經(jīng)過B、M兩點的直線的解析式,并求出此直線與x軸的交點C的坐標(biāo);
(3)若點P在拋物線的對稱軸x=1上運動,請你探索:在x軸上方是否存在這樣的P點,使精英家教網(wǎng)以P為圓心的圓經(jīng)過點A,并且與直線BM相切?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=ax2+bx+c交x軸于點A(-3,0),點B(1,0),交y軸于點E(0,-3)精英家教網(wǎng).點C是點A關(guān)于點B的對稱點,點F是線段BC的中點,直線l過點F且與y軸平行.直線y=-x+m過點C,交y軸于D點.
(1)求拋物線的函數(shù)表達(dá)式;
(2)點K為線段AB上一動點,過點K作x軸的垂線與直線CD交于點H,與拋物線交于點G,求線段HG長度的最大值;
(3)在直線l上取點M,在拋物線上取點N,使以點A,C,M,N為頂點的四邊形是平行四邊形,求點N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,拋物線y=ax2+bx+c(a≠0)與x軸兩交點是A(-1,0),B(3,0),則如圖可知y<0時,x的取值范圍是( 。
A、-1<x<3B、3<x<-1C、x>-1或x<3D、x<-1或x>3

查看答案和解析>>

同步練習(xí)冊答案