解:(1)設(shè)直線AB的函數(shù)解析式為y=kx+4,
代入(4,0)得:4k+4=0,
解得:k=-1,
則直線AB的函數(shù)解析式為y=-x+4;
(2)①由已知得:
OB=OC,∠BOD=∠COD=90°,
又∵OD=OD,
∴△BDO≌△CDO,
∴∠BDO=∠CDO,
∵∠CDO=∠ADP,
∴∠BDE=∠ADP,
②連結(jié)PE,
∵∠ADP是△DPE的一個外角,
∴∠ADP=∠DEP+∠DPE,
∵∠BDE是△ABD的一個外角,
∴∠BDE=∠ABD+∠OAB,
∵∠ADP=∠BDE,∠DEP=∠ABD,
∴∠DPE=∠OAB,
∵OA=OB=4,∠AOB=90°,
∴∠OAB=45°,
∴∠DPE=45°,
∴∠DFE=∠DPE=45°,
∵DF是⊙Q的直徑,
∴∠DEF=90°,
∴△DEF是等腰直角三角形,
∴DF=
DE,即y=
x;
(3)當(dāng)BD:BF=2:1時,
過點F作FH⊥OB于點H,
∵∠DBO+∠OBF=90°,∠OBF+∠BFH=90°,
∴∠DBO=∠BFH,
又∵∠DOB=∠BHF=90°,
∴△BOD∽△FHB,
∴
=
=
=2,
∴FH=2,OD=2BH,
∵∠FHO=∠EOH=∠OEF=90°,
∴四邊形OEFH是矩形,
∴OE=FH=2,
∴EF=OH=4-
OD,
∵DE=EF,
∴2+OD=4-
OD,
解得:OD=
,
∴點D的坐標(biāo)為(0,
),
∴直線CD的解析式為y=
x+
,
由
得:
,
則點P的坐標(biāo)為(2,2);
當(dāng)
=
時,
連結(jié)EB,同(2)①可得:∠ADB=∠EDP,
而∠ADB=∠DEB+∠DBE,∠EDP=∠DAP+∠DPA,
∵∠DEB=∠DPA,
∴∠DBE=∠DAP=45°,
∴△DEF是等腰直角三角形,
過點F作FG⊥OB于點G,
同理可得:△BOD∽△FGB,
∴
=
=
=
,
∴FG=8,OD=
BG,
∵∠FGO=∠GOE=∠OEF=90°,
∴四邊形OEFG是矩形,
∴OE=FG=8,
∴EF=OG=4+2OD,
∵DE=EF,
∴8-OD=4+2OD,
OD=
,
∴點D的坐標(biāo)為(0,-
),
直線CD的解析式為:y=-
x-
,
由
得:
,
∴點P的坐標(biāo)為(8,-4),
綜上所述,點P的坐標(biāo)為(2,2)或(8,-4).
分析:(1)設(shè)直線AB的函數(shù)解析式為y=kx+4,把(4,0)代入即可;
(2)①先證出△BDO≌△COD,得出∠BDO=∠CDO,再根據(jù)∠CDO=∠ADP,即可得出∠BDE=∠ADP,
②先連結(jié)PE,根據(jù)∠ADP=∠DEP+∠DPE,∠BDE=∠ABD+∠OAB,∠ADP=∠BDE,∠DEP=∠ABD,得出∠DPE=∠OAB,再證出∠DFE=∠DPE=45°,最后根據(jù)∠DEF=90°,得出△DEF是等腰直角三角形,從而求出DF=
DE,即y=
x;
(3)當(dāng)
=2時,過點F作FH⊥OB于點H,則∠DBO=∠BFH,再證出△BOD∽△FHB,
=
=
=2,得出FH=2,OD=2BH,再根據(jù)∠FHO=∠EOH=∠OEF=90°,得出四邊形OEFH是矩形,OE=FH=2,EF=OH=4-
OD,根據(jù)DE=EF,求出OD的長,從而得出直線CD的解析式為y=
x+
,最后根據(jù)
求出點P的坐標(biāo)即可;
當(dāng)
=
時,連結(jié)EB,先證出△DEF是等腰直角三角形,過點F作FG⊥OB于點G,同理可得△BOD∽△FGB,
=
=
=
,得出FG=8,OD=
BG,再證出四邊形OEFG是矩形,求出OD的值,再求出直線CD的解析式,最后根據(jù)
即可求出點P的坐標(biāo).
點評:此題考查了一次函數(shù)的綜合,用到的知識點是一次函數(shù)、矩形的性質(zhì)、圓的性質(zhì),關(guān)鍵是綜合運用有關(guān)知識作出輔助線,列出方程組.