精英家教網 > 初中數學 > 題目詳情

如果關于x的方程的兩實數根相等,則a=        

 

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如果關于x的方程的兩根分別為2、-4,那么這個方程的一般式是
 

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

已知關于x的方程(k-1)x2+(2k-3)x+k+1=0有兩個不相等的實數根x1,x2
(1)求k的取值范圍;
(2)是否存在實數k,使方程的兩實數根互為相反數?如果存在,求出k的值;如果不存在,請說明理由.
解:(1)根據題意,得
△=(2k-3)2-4(k-1)(k+1)
=4k2-12k+9-4k2+4
=-12k+13>0.
∴k<數學公式
∴當k<數學公式時,方程有兩個不相等的實數根.
(2)存在.如果方程的兩個實數根互為相反數,則x1+x2=數學公式=0,解得k=數學公式
檢驗知k=數學公式數學公式=0的解.
所以當k=數學公式時,方程的兩實數根x1,x2互為相反數.
當你讀了上面的解答過程后,請判斷是否有錯誤?如果有,請指出錯誤之處,直接寫出正確的答案.

查看答案和解析>>

科目:初中數學 來源:《第2章 一元二次方程》2010年創(chuàng)新題(解析版) 題型:解答題

已知關于x的方程(k-1)x2+(2k-3)x+k+1=0有兩個不相等的實數根x1,x2
(1)求k的取值范圍;
(2)是否存在實數k,使方程的兩實數根互為相反數?如果存在,求出k的值;如果不存在,請說明理由.
解:(1)根據題意,得
△=(2k-3)2-4(k-1)(k+1)
=4k2-12k+9-4k2+4
=-12k+13>0.
∴k<
∴當k<時,方程有兩個不相等的實數根.
(2)存在.如果方程的兩個實數根互為相反數,則x1+x2==0,解得k=
檢驗知k==0的解.
所以當k=時,方程的兩實數根x1,x2互為相反數.
當你讀了上面的解答過程后,請判斷是否有錯誤?如果有,請指出錯誤之處,直接寫出正確的答案.

查看答案和解析>>

科目:初中數學 來源:《第23章 一元二次方程》2009年單元測試卷(解析版) 題型:解答題

已知關于x的方程(k-1)x2+(2k-3)x+k+1=0有兩個不相等的實數根x1,x2
(1)求k的取值范圍;
(2)是否存在實數k,使方程的兩實數根互為相反數?如果存在,求出k的值;如果不存在,請說明理由.
解:(1)根據題意,得
△=(2k-3)2-4(k-1)(k+1)
=4k2-12k+9-4k2+4
=-12k+13>0.
∴k<
∴當k<時,方程有兩個不相等的實數根.
(2)存在.如果方程的兩個實數根互為相反數,則x1+x2==0,解得k=
檢驗知k==0的解.
所以當k=時,方程的兩實數根x1,x2互為相反數.
當你讀了上面的解答過程后,請判斷是否有錯誤?如果有,請指出錯誤之處,直接寫出正確的答案.

查看答案和解析>>

科目:初中數學 來源:2003年山東省濰坊市中考數學試卷(解析版) 題型:解答題

已知關于x的方程(k-1)x2+(2k-3)x+k+1=0有兩個不相等的實數根x1,x2
(1)求k的取值范圍;
(2)是否存在實數k,使方程的兩實數根互為相反數?如果存在,求出k的值;如果不存在,請說明理由.
解:(1)根據題意,得
△=(2k-3)2-4(k-1)(k+1)
=4k2-12k+9-4k2+4
=-12k+13>0.
∴k<
∴當k<時,方程有兩個不相等的實數根.
(2)存在.如果方程的兩個實數根互為相反數,則x1+x2==0,解得k=
檢驗知k==0的解.
所以當k=時,方程的兩實數根x1,x2互為相反數.
當你讀了上面的解答過程后,請判斷是否有錯誤?如果有,請指出錯誤之處,直接寫出正確的答案.

查看答案和解析>>

同步練習冊答案