【題目】神仙居景區(qū)門票價格80元/人,景區(qū)為吸引游客,對門票價格進行動態(tài)管理,非節(jié)假日打a折,節(jié)假日期間,10人以下(包 括10人)不打折,10人以上超過10人的部分打b折,設(shè)游客為x人,門票費用為y元,非節(jié)假日門票費用y1(元)及節(jié)假日門票費用y2(元)與游客x(人)之間的函數(shù)關(guān)系如圖所示.

(1)a= , b=
(2)直接寫出y1、y2與x之間的函數(shù)關(guān)系式;
(3)導(dǎo)游小王6月10日(非節(jié)假日)帶A旅游團,6月20日(端午節(jié))帶B旅游團到神仙居景區(qū)旅游,兩團共計50人,兩次共付門票費用3040元,求A、B兩個旅游團各多少人?

【答案】
(1)6;8
(2)

解:設(shè)y1=k1x,

函數(shù)圖像經(jīng)過點(0,0)和(10,480),

10k1=480,

k1=48,

y1=48x;

0≤x≤10時,設(shè)y2=k2x,

函數(shù)圖像經(jīng)過點(0,0)和(10,800),

10k2=800,

k2=80,

y2=80x,

x>10時,設(shè)y2=kx+b,

函數(shù)圖像經(jīng)過點(10,800)和(20,1440),

,

y2=64x+160;

y2= ;


(3)

解:設(shè)A團有n人,則B團的人數(shù)為(50﹣n),

當(dāng)0<50-n≤10時,即40≤n≤50,則48n+80(50﹣n)=3040,

解得n=30(不符合題意舍去),

當(dāng)10<50-n<50時,即0<n<40,則48n+64(50﹣n)+160=3040,

解得n=20,

則50﹣n=50﹣20=30.

答:A團有20人,B團有30人.


【解析】解:(1)由y1 圖像上點(10,480),得到10人的費用為480元,
a= ×10=6;
由y2 圖像上點(10,800)和(20,1440),得到20人中后10人費用為640元,
∴b= ×10=8;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△COD是△AOB繞點O順時針旋轉(zhuǎn)40°后得到的圖形,若點C恰好落在AB上,且∠AOD的度數(shù)為90°,則∠B的度數(shù)是(

A.40°
B.50°
C.60°
D.70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線y= x+2 與x軸,y軸分別交于M,N兩點,O為坐標(biāo)原點,將△OMN沿直線MN翻折后得到△PMN,則點P的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀以下材料,并按要求完成相應(yīng)的任務(wù).

幾何中,平行四邊形、矩形、菱形、正方形和等腰梯形都是特殊的四邊形,大家對于它們的性質(zhì)都非常熟悉,生活中還有一種特殊的四邊形﹣﹣箏形.所謂箏形,它的形狀與我們生活中風(fēng)箏的骨架相似.
定義:兩組鄰邊分別相等的四邊形,稱之為箏形,如圖,四邊形ABCD是箏形,其中AB=AD,CB=CD
判定:①兩組鄰邊分別相等的四邊形是箏形
②有一條對角線垂直平分另一條對角線的四邊形是箏形
顯然,菱形是特殊的箏形,就一般箏形而言,它與菱形有許多相同點和不同點

如果只研究一般的箏形(不包括菱形),請根據(jù)以上材料完成下列任務(wù):
如果只研究一般的箏形(不包括菱形),請根據(jù)以上材料完成下列任務(wù):
(1)請說出箏形和菱形的相同點和不同點各兩條;
(2)請仿照圖1的畫法,在圖2所示的8×8網(wǎng)格中重新設(shè)計一個由四個全等的箏形和四個全等的菱形組成的新圖案,具體要求如下:
①頂點都在格點上;
②所設(shè)計的圖案既是軸對稱圖形又是中心對稱圖形;
③將新圖案中的四個箏形都圖上陰影(建議用一系列平行斜線表示陰影).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算與解分式方程.
(1)

(2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD中,AB=3,BC=5,∠ABC的平分線與AD相交于點E,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,∠B=90°,BC=3,AB=4,D是邊AB上一點,DE∥BC交AC于點E,將△ADE沿DE翻折得到△A′DE,若△A′EC是直角三角形,則AD長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在Rt△ABC中,∠ACB=90°,點D在邊AC上,DE⊥B于點E,連CE.
(1)如圖1,已知AC=BC,AD=2CD,

①△ADE與△ABC面積之比;
②求tan∠ECB的值;
(2)如圖2,已知 = =k,求tan∠ECB的值(用含k的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A,B,C在一條直線上,△ABD,△BCE均為等邊三角形,連接AE和CD,AE分別交CD,BD于點M,P,CD交BE于點Q,連接PQ,BM,下面結(jié)論:
①△ABE≌△DBC;②∠DMA=60°;③△BPQ為等邊三角形;④MB平分∠AMC,
其中結(jié)論正確的有( 。

A.1個
B.2個
C.31個
D.4個

查看答案和解析>>

同步練習(xí)冊答案