【題目】如圖,點(diǎn)C為△ABD的外接圓上的一動(dòng)點(diǎn)(點(diǎn)C不在 上,且不與點(diǎn)B,D重合),∠ACB=∠ABD=45°
(1)求證:BD是該外接圓的直徑;
(2)連結(jié)CD,求證: AC=BC+CD;
(3)若△ABC關(guān)于直線AB的對(duì)稱圖形為△ABM,連接DM,試探究DM2 , AM2 , BM2三者之間滿足的等量關(guān)系,并證明你的結(jié)論.

【答案】
(1)解:∵ = ,

∴∠ACB=∠ADB=45°,

∵∠ABD=45°,

∴∠BAD=90°,

∴BD是△ABD外接圓的直徑;


(2)在CD的延長(zhǎng)線上截取DE=BC,

連接EA,

∵∠ABD=∠ADB,

∴AB=AD,

∵∠ADE+∠ADC=180°,

∠ABC+∠ADC=180°,

∴∠ABC=∠ADE,

在△ABC與△ADE中,

,

∴△ABC≌△ADE(SAS),

∴∠BAC=∠DAE,

∴∠BAC+∠CAD=∠DAE+∠CAD,

∴∠BAD=∠CAE=90°,

=

∴∠ACD=∠ABD=45°,

∴△CAE是等腰直角三角形,

AC=CE,

AC=CD+DE=CD+BC;


(3)過(guò)點(diǎn)M作MF⊥MB于點(diǎn)M,過(guò)點(diǎn)A作AF⊥MA于點(diǎn)A,MF與AF交于點(diǎn)F,連接BF,

由對(duì)稱性可知:∠AMB=∠ACB=45°,

∴∠FMA=45°,

∴△AMF是等腰直角三角形,

∴AM=AF,MF= AM,

∵∠MAF+∠MAB=∠BAD+∠MAB,

∴∠FAB=∠MAD,

在△ABF與△ADM中,

∴△ABF≌△ADM(SAS),

∴BF=DM,

在Rt△BMF中,

∵BM2+MF2=BF2,

∴BM2+2AM2=DM2


【解析】(1)要證明BD是該外接圓的直徑,只需要證明∠BAD是直角即可,又因?yàn)椤螦BD=45°,所以需要證明∠ADB=45°;(2)在CD延長(zhǎng)線上截取DE=BC,連接EA,只需要證明△EAF是等腰直角三角形即可得出結(jié)論;(3)過(guò)點(diǎn)M作MF⊥MB于點(diǎn)M,過(guò)點(diǎn)A作AF⊥MA于點(diǎn)A,MF與AF交于點(diǎn)F,證明△AMF是等腰三角形后,可得出AM=AF,MF= AM,然后再證明△ABF≌△ADM可得出BF=DM,最后根據(jù)勾股定理即可得出DM2 , AM2 , BM2三者之間的數(shù)量關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC的3個(gè)頂點(diǎn)都在5×5的網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位長(zhǎng)度)的格點(diǎn)上,將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)到△A′BC′的位置,且點(diǎn)A′、C′仍落在格點(diǎn)上,則線段AB掃過(guò)的圖形面積是平方單位(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:|﹣3|﹣(2016+sin30°)0﹣(﹣ ﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】以下是某省2010年教育發(fā)展情況有關(guān)數(shù)據(jù):

全省共有各級(jí)各類學(xué)校25000所,其中小學(xué)12500所,初中2000所,高中450所,其它學(xué)校10050所;全省共有在校學(xué)生995萬(wàn)人,其中小學(xué)440萬(wàn)人,初中200萬(wàn)人,高中75萬(wàn)人,其它280萬(wàn)人;全省共有在職教師48萬(wàn)人,其中小學(xué)20萬(wàn)人,初中12萬(wàn)人,高5萬(wàn)人,其它11萬(wàn)人.

請(qǐng)將上述資料中的數(shù)據(jù)按下列步驟進(jìn)行統(tǒng)計(jì)分析.

1)整理數(shù)據(jù):請(qǐng)?jiān)O(shè)計(jì)一個(gè)統(tǒng)計(jì)表,將以上數(shù)據(jù)填入表格中.

2)描述數(shù)據(jù):下圖是描述全省各級(jí)各類學(xué)校數(shù)的扇形統(tǒng)計(jì)圖,請(qǐng)將它補(bǔ)充完整.

3)分析數(shù)據(jù):

分析統(tǒng)計(jì)表中的相關(guān)數(shù)據(jù),小學(xué)、初中、高中三個(gè)學(xué)段的師生比,最小的是哪個(gè)學(xué)段?請(qǐng)直接寫出.(師生比=在職教師數(shù)在校學(xué)生數(shù))

根據(jù)統(tǒng)計(jì)表中的相關(guān)數(shù)據(jù),你還能從其它角度分析得出什么結(jié)論嗎?(寫出一個(gè)即可)

從扇形統(tǒng)計(jì)圖中,你得出什么結(jié)論?(寫出一個(gè)即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=﹣x+3與x軸交于點(diǎn)C,與直線AD交于點(diǎn)A( ),點(diǎn)D的坐標(biāo)為(0,1)
(1)求直線AD的解析式;
(2)直線AD與x軸交于點(diǎn)B,若點(diǎn)E是直線AD上一動(dòng)點(diǎn)(不與點(diǎn)B重合),當(dāng)△BOD與△BCE相似時(shí),求點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 甲、乙兩名車工都加工要求尺寸是直徑10毫米的零件.從他們所生產(chǎn)的零件中,各取5件,測(cè)得直徑如下(單位:毫米)

甲:10.05, 10.02,9.97,9.95,10.01

乙:9.99,10.02,10.02,9.98,10.01

分別計(jì)算兩組數(shù)據(jù)的標(biāo)準(zhǔn)差(精確到0.01),說(shuō)明在尺寸符合規(guī)格方面,誰(shuí)做得較好?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某汽車廠去年每個(gè)季度汽車銷售數(shù)量(輛)占當(dāng)季汽車產(chǎn)量(輛)百分比的統(tǒng)計(jì)圖如圖所示.根據(jù)統(tǒng)計(jì)圖回答下列問(wèn)題:

(1)若第一季度的汽車銷售量為2100輛,求該季的汽車產(chǎn)量;

(2)圓圓同學(xué)說(shuō):因?yàn)榈诙谌@兩個(gè)季度汽車銷售數(shù)量占當(dāng)季汽車產(chǎn)量是從75%降到50%,所以第二季度的汽車產(chǎn)量一定高于第三季度的汽車產(chǎn)量,你覺得圓圓說(shuō)的對(duì)嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,2,3分別以△ABC的AB和AC為邊向△ABC外作正三角形(等邊三角形)、正四邊形(正方形)、正五邊形,BE和CD相交于點(diǎn)O.

(1)在圖1中,求證:△ABE≌△ADC.
(2)由(1)證得△ABE≌△ADC,由此可推得在圖1中∠BOC=120°,請(qǐng)你探索在圖2中,∠BOC的度數(shù),并說(shuō)明理由或?qū)懗鲎C明過(guò)程.
(3)填空:在上述(1)(2)的基礎(chǔ)上可得在圖3中∠BOC=(填寫度數(shù)).
(4)由此推廣到一般情形(如圖4),分別以△ABC的AB和AC為邊向△ABC外作正n邊形,BE和CD仍相交于點(diǎn)O,猜想得∠BOC的度數(shù)為(用含n的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形網(wǎng)格中的每個(gè)小正方形邊長(zhǎng)都是1,每個(gè)小格的頂點(diǎn)叫做格點(diǎn),以格點(diǎn)為頂點(diǎn)分別按下列要求畫三角形.
(1)在圖1中,畫一個(gè)三角形,使它的三邊長(zhǎng)都是有理數(shù);

(2)在圖2中,畫一個(gè)直角三角形,使它們的三邊長(zhǎng)都是無(wú)理數(shù);

(3)在圖3中,畫一個(gè)正方形,使它的面積是10.

查看答案和解析>>

同步練習(xí)冊(cè)答案