【題目】如圖,已知△ABC和△BDE都是等邊三角形。則下列結(jié)論:①AE=CD.②BF=BG.③HBFG.④∠AHC=60.⑤△BFG是等邊三角形,其中正確的有___.

【答案】①②④⑤

【解析】

由題中條件可得△ABE≌△CBD,得出對(duì)應(yīng)邊、對(duì)應(yīng)角相等,進(jìn)而得出△BGD≌△BFE,△ABF≌△CGB,再由邊角關(guān)系即可求解題中結(jié)論是否正確,進(jìn)而可得出結(jié)論.

∵△ABC與△BDE為等邊三角形,

AB=BC,BD=BE,∠ABC=∠DBE=60,

∴∠ABE=∠CBD,

AB=BC,BD=BE,∠ABE=∠CBD,故①正確

∴△ABE≌△CBD,

AE=CD,∠BDC=∠AEB

又∵∠DBG=∠FBE=60,

∴△BGD≌△BFE,

BG=BF,∠BFG=∠BGF=60,故②正確,

∴△BFG是等邊三角形,故⑤正確,

FGAD,

BF=BG,AB=BC,∠ABF=∠CBG=60

∴△ABF≌△CGB,

∴∠BAF=∠BCG,

∴∠CAF+∠ACB+∠BCD=∠CAF+∠ACB+∠BAF=60°+60°=120°,

∴∠AHC=60°,故④正確,

∵∠FGB=∠GBD=60°,

FGAD,

不妨設(shè)FGBH,則BHAD,易證△ABH≌△DBH,可得AB=BD,顯然與已知條件矛盾,故③錯(cuò)誤,

故答案為①②④⑤.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,EF分別是邊AD、CD上的點(diǎn),AE=ED,DF=DC,連接EF并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)G

(1)求證:ABE∽△DEF;

(2)若正方形的邊長(zhǎng)為4,求BG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是一垂直于水平面的建筑物,某同學(xué)從建筑物底端B出發(fā),先沿水平方向向右行走20米到達(dá)點(diǎn)C,再經(jīng)過(guò)一段坡度(或坡比)為i=1:0.75、坡長(zhǎng)為10米的斜坡CD到達(dá)點(diǎn)D,然后再沿水平方向向右行走40米到達(dá)點(diǎn)E(A,B,C,D,E均在同一平面內(nèi)).在E處測(cè)得建筑物頂端A的仰角為24°,則建筑物AB的高度約為(參考數(shù)據(jù):sin24°≈0.41,cos24°≈0.91,tan24°=0.45)( 。

A. 21.7 B. 22.4 C. 27.4 D. 28.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一列數(shù):1―2,3,―4,5,―6,7將這列數(shù)排成下列形式:

11

2行 -2  3

3行 -4  5  -6

47  -8   9  -10

511 12  13  -14  15

… …

按照上述規(guī)律排下去,那么第10行從左邊數(shù)第5個(gè)數(shù)等于

A.50B.50C.60D.60

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知整數(shù),…滿足下列條件:,,,…,依次類推,則的值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,,

①若,求的值;

②若,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,點(diǎn)P是直角三角形ABC斜邊AB上一動(dòng)點(diǎn)(不與A,B重合),分別過(guò)A,B向直線CP作垂線,垂足分別為E,F,Q為斜邊AB的中點(diǎn)。

(1)如圖1,當(dāng)點(diǎn)P與點(diǎn)Q重合時(shí),AEBF的位置關(guān)系是___,QEQF的數(shù)量關(guān)系是___;

(2)如圖2,當(dāng)點(diǎn)P在線段AB上不與點(diǎn)Q重合時(shí),試判斷QEQF的數(shù)量關(guān)系,并給予證明;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知∠α的頂點(diǎn)在正n邊形的中心點(diǎn)O處,∠α繞著頂點(diǎn)O旋轉(zhuǎn),角的兩邊與正n 形的兩邊分別交于點(diǎn)M、N,α與正n邊形重疊部分面積為S.

(1)當(dāng)n=4,邊長(zhǎng)為2,α=90°時(shí),如圖(1),請(qǐng)直接寫出S的值;

(2)當(dāng)n=5,α=72°時(shí),如圖(2),請(qǐng)問(wèn)在旋轉(zhuǎn)過(guò)程中,S是否發(fā)生變化?并說(shuō)明理由;

(3)當(dāng)n=6,α=120°時(shí),如圖(3),請(qǐng)猜想S是原正六邊形面積的幾分之幾(不必說(shuō)明理由).若∠α的平分線與BC邊交于點(diǎn)P,判斷四邊形OMPN的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中,正確的是(

A.關(guān)于某直線對(duì)稱的兩個(gè)三角形是全等三角形B.全等三角形是關(guān)于某直線對(duì)稱的

C.兩個(gè)圖形關(guān)于某直線對(duì)稱,則這兩個(gè)圖形一定分別位于這條直線的兩側(cè)D.有一條公共邊的兩個(gè)全等三角形關(guān)于公共邊所在的直線對(duì)稱

查看答案和解析>>

同步練習(xí)冊(cè)答案