直線y=-x+6與坐標(biāo)軸分別交于A、B兩點(diǎn),動(dòng)點(diǎn)P、Q同時(shí)從O點(diǎn)勻速出發(fā),同時(shí)到達(dá)A點(diǎn)時(shí)運(yùn)動(dòng)停止.點(diǎn)Q沿線段OA運(yùn)動(dòng),速度為每秒1個(gè)單位長(zhǎng)度,點(diǎn)P沿路線O→B→A運(yùn)動(dòng).

【小題1】直接寫(xiě)出A、B兩點(diǎn)的坐標(biāo);
【小題2】設(shè)點(diǎn)Q的運(yùn)動(dòng)時(shí)間為t秒,△OPQ的面積為S,求出S與t之間的函數(shù)關(guān)系式;
【小題3】當(dāng)s= 時(shí),求出點(diǎn)P的坐標(biāo),并直接寫(xiě)出以點(diǎn)O、P、Q為頂點(diǎn)的平行四邊形的
第四個(gè)頂點(diǎn)M的坐標(biāo).

【小題1】A(8,0)B(0,6)
【小題2】∵OA=8,OB=6,求得AB="10"
點(diǎn)的時(shí)間是=8(秒),∴點(diǎn)的速度是=2(單位/秒)
當(dāng)在線段上運(yùn)動(dòng)(或0))時(shí),, 
當(dāng)在線段上運(yùn)動(dòng)(或)時(shí),,
如圖,作于點(diǎn),由,得,

【小題3】      M1(,),M2(-,),M3(,-)解析:
p;【解析】略
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某天,小明來(lái)到體育館看球賽,進(jìn)場(chǎng)時(shí),發(fā)現(xiàn)門(mén)票還在家里,此時(shí)離比賽開(kāi)始還有25分鐘,于是立即步行回家取票.同時(shí),他父親從家里出發(fā)騎自行車(chē)以他3倍的速度給他送票,兩人在途中相遇,相遇后小明立即坐父親的自行車(chē)趕回體育館.下圖中線段AB、OB分別表示父、子倆送票、取票過(guò)程中,離體育館的路程S(米)與所用時(shí)間t(分鐘)之間的精英家教網(wǎng)函數(shù)關(guān)系.
結(jié)合圖象解答下列問(wèn)題(假設(shè)騎自行車(chē)和步行的速度始終保持不變):
(1)求點(diǎn)B的坐標(biāo)和AB所在直線的函數(shù)關(guān)系式;
(2)小明能否在比賽開(kāi)始前到達(dá)體育館?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知拋物線y=ax2+bx+c經(jīng)過(guò)A(-1,0),B(3,0),C(0,3)三點(diǎn).
(1)求拋物線的解析式和頂點(diǎn)M的坐標(biāo),并在給定的直角坐系中畫(huà)出這條拋物線;
(2)若點(diǎn)(x0,y0)在拋物線上,且1≤x0≤4,寫(xiě)出y0的取值范圍;
(3)設(shè)平行于y軸的直線x=t交線段BM于點(diǎn)P(點(diǎn)P能與點(diǎn)M重合,不能與點(diǎn)B重合),交x軸于點(diǎn)Q,四邊形AQPC的面積為S
①求s關(guān)于t的函數(shù)關(guān)系式及自變量t的取值范圍;
②求S取得最大值時(shí)P的坐標(biāo);
③設(shè)四邊形OBMC的面積為S’,判斷是否存在點(diǎn)P,使得S=S’,若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(-3,0),若將經(jīng)過(guò)A、C兩點(diǎn)的直線y=kx+精英家教網(wǎng)b沿y軸向下平移3個(gè)單位后恰好經(jīng)過(guò)原點(diǎn),且拋物線的對(duì)稱(chēng)軸是直線x=-2.
(1)求直線AC及拋物線的函數(shù)表達(dá)式;
(2)如果P是線段AC上一點(diǎn),設(shè)△ABP、△BPC的面積分別為S△ABP、S△BPC,且S△ABP:S△BPC=2:3,求點(diǎn)P的坐標(biāo);
(3)設(shè)⊙Q的半徑為1,圓心Q在拋物線上運(yùn)動(dòng),則在運(yùn)動(dòng)過(guò)程中是否存在⊙Q與坐標(biāo)軸相切的情況?若存在,求出圓心Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.并探究:若設(shè)⊙Q的半徑為r,圓心Q在拋物線上運(yùn)動(dòng),則當(dāng)r取何值時(shí),⊙Q與兩坐軸同時(shí)相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如下面第一幅圖,點(diǎn)A的坐標(biāo)為(-1,1)
(1)那么點(diǎn)B,點(diǎn)C的坐標(biāo)分別為
 
;
(2)若一個(gè)關(guān)于x,y的二元一次方程,有兩個(gè)解是
x=點(diǎn)A的橫坐標(biāo)
y=點(diǎn)A的縱坐標(biāo)
x=點(diǎn)B的橫坐標(biāo)
y=點(diǎn)B的縱坐標(biāo)
請(qǐng)寫(xiě)出這個(gè)二元一次方程,并檢驗(yàn)說(shuō)明點(diǎn)C的坐標(biāo)值是否是它的解.
(3)任。2)中方程的又一個(gè)解(不與前面的解雷同),將該解中x的值作為點(diǎn)D的橫坐標(biāo),y的值作為點(diǎn)D的縱坐標(biāo),在下面第一幅圖中描出點(diǎn)D;
(4)在下面第一幅圖中作直線AB與直線AC,則直線AB與直線AC的位置關(guān)系
 
,點(diǎn)D與直線AB的位置關(guān)系是
 

(5)若把直線AB叫做(2)中方程的圖象,類(lèi)似地請(qǐng)?jiān)趥溆脠D上畫(huà)出二元一次方程組
x+y=4
x-y=-2
中兩個(gè)二元一次方程的圖象,并用一句話來(lái)概括你對(duì)二元一次方程組的解與它圖象之間的發(fā)現(xiàn).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,將拋物線y=2x2沿y軸向上平移1個(gè)單位,再沿x軸向右平移兩個(gè)單位,平移后拋物線的頂點(diǎn)坐標(biāo)記作A,直線x=3與平移后的拋物線相交于B,與直線OA相交于C.
(1)拋物線解析式;
(2)求△ABC面積;
(3)點(diǎn)P在平移后拋物線的對(duì)稱(chēng)軸上,如果△ABP與△ABC相似,求所有滿(mǎn)足條件的P點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案