24、已知,如圖:正方形ABCD,將Rt△EFG斜邊EG的中點與點A重合,直角頂點F落在正方形的AB邊上,Rt△EFG的兩直角邊分別交AB、AD邊于P、Q兩點,(點P與點F重合),如圖所示:

(1)求證:EP2+GQ2=PQ2;
(2)若將Rt△EFG繞著點A逆時針旋轉(zhuǎn)α(0°<α≤90°),兩直角邊分別交AB、AD邊于P、Q兩點,如圖2所示:判斷四條線段EP、PF、FQ、QG之間是否存在什么確定的相等關(guān)系?若存在,證明你的結(jié)論.若不存在,請說明理由;
(3)若將Rt△EFG繞著點A逆時針旋轉(zhuǎn)α(90°<α<180°),兩直角邊分別交AB、AD兩邊延長線于P、Q兩點,并判斷四條線段EP、PF、FQ、QG之間存在何種確定的相等關(guān)系?按題意完善圖3,請直接寫出你的結(jié)論(不用證明).
分析:(1)過點E作EH∥FG,由此可證△EAH≌△GAQ,然后根據(jù)全等三角形的性質(zhì)得到EH=QG,又PQ=PH,在Rt△EPH中,EP2+EH2=PH2,由此可以得到EP2+GQ2=PQ2;
(2)過點E作EH∥FG,交DA的延長線于點H,連接PQ、PH,由此可證△EAH≌△GAQ,然后根據(jù)全等三角形的性質(zhì)得到EH=QG,又PH=PQ,在Rt△EPH中,EP2+EH2=PH2,即EP2+GQ2=PH2,在Rt△PFQ中,PF2+FQ2=PQ2,故PF2+FQ2=EP2+GQ2;
(3)四條線段EP、PF、FQ、QG之間的關(guān)系為PE2+GQ2=PF2+FQ2,證明方法同上.
解答:解:(1)過點E作EH∥FG,如圖所示:
∵EA=AG,∠HEA=∠AGO,∠HAE=∠GAD,
∴△EAH≌△GAQ,
∴EH=QG,HA=AQ,
∵FA⊥AD,
∴PQ=PH.
在Rt△EPH中,
∵EP2+EH2=PH2,
∴EP2+GQ2=PQ2;

(2)過點E作EH∥FG,交DA的延長線于點H,連接PQ、PH,
∵EA=AG,∠HEA=∠AGO,∠HAE=∠GAD,
∴△EAH≌△GAQ,
∴EH=QG,HA=AQ,
∵PA⊥AD,
∴PQ=PH.
在Rt△EPH中,
∵EP2+EH2=PH2,
∴EP2+GQ2=PH2
在Rt△PFQ中,
∵PF2+FQ2=PQ2,
∴PF2+FQ2=EP2+GQ2

(3)四條線段EP、PF、FQ、QG之間的關(guān)系為PE2+GQ2=PF2+FQ2
點評:本題主要考查了旋轉(zhuǎn)的性質(zhì),利用旋轉(zhuǎn)的性質(zhì)來構(gòu)造全等三角形的判定條件,同時解題過程中,要利用直角三角形和正方形的特殊性質(zhì)來解決問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,O正方形ABCD的中心,BE平分∠DBC,交DC于點E,延長BC到點F,使CF=CE精英家教網(wǎng),連接DF,交BE的延長線于點G,連接OG.
(1)求證:△BCE≌△DCF;
(2)OG與BF有什么數(shù)量關(guān)系?證明你的結(jié)論;
(3)若GE•GB=4-2
2
,求正方形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖在正方形OADC中,點C的坐標(biāo)為(0,4),點A的坐標(biāo)為(4,0),CD的延長線交雙曲線y=
32
x
于點B.
(1)求直線AB的解析式;精英家教網(wǎng)
精英家教網(wǎng)
(2)G為x軸的負(fù)半軸上一點連接CG,過G作GE⊥CG交直線AB于E.求證CG=GE;
(3)在(2)的條件下,延長DA交CE的延長線于F,當(dāng)G在x的負(fù)半軸上運動的過程中,請問
OG+GF
DF
的值是否為定值,若是,請求出其值;若不是,請說明你的理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,正方形ABCD的邊長為2a,H是以BC為直徑的半圓O上一點,過H與圓O相切的直線交AB精英家教網(wǎng)于E,交CD于F.
(1)當(dāng)點H在半圓上移動時,切線EF在AB、CD上的兩個交點也分別在AB、CD上移動(E、A不重合,F(xiàn)、D不重合),試問:四邊形AEFD的周長是否也在變化?證明你的結(jié)論;
(2)設(shè)△BOE的面積為S1,△COF的面積為S2,正方形ABCD的面積為S,且S1+S2=
1348
S,求BE與CF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,正方形紙片ABCD的邊長是4,點M、N分別在兩邊AB和CD上(其中點N不與點C重合),沿直線MN折疊該紙片,點B恰好落在AD邊上點E處.
(1)設(shè)AE=x,四邊形AMND的面積為 S,求 S關(guān)于x 的函數(shù)解析式,并指明該函數(shù)的定義域;
(2)當(dāng)AM為何值時,四邊形AMND的面積最大?最大值是多少?
(3)點M能是AB邊上任意一點嗎?請求出AM的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案