【題目】如圖,在邊長為10的菱形ABCD中,對角線BD=16,對角線AC,BD相交于點(diǎn)G,點(diǎn)O是直線BD上的動(dòng)點(diǎn),OE⊥AB于E,OF⊥AD于F.
(1)求對角線AC的長及菱形ABCD的面積.
(2)如圖①,當(dāng)點(diǎn)O在對角線BD上運(yùn)動(dòng)時(shí),OE+OF的值是否發(fā)生變化?請說明理由.
(3)如圖②,當(dāng)點(diǎn)O在對角線BD的延長線上時(shí),OE+OF的值是否發(fā)生變化?若不變,請說明理由;若變化,請?zhí)骄?/span>OE,OF之間的數(shù)量關(guān)系.
【答案】(1)12;96 (2)答案見解析 (3)答案見解析
【解析】
(1)根據(jù)菱形的對角線互相垂直平分求出BG,再利用勾股定理列式求出AG,然后根據(jù)AC=2AG計(jì)算即可得解;再根據(jù)菱形的面積等于對角線乘積的一半列式計(jì)算即可得解;
(2)連接AO,根據(jù)S△ABD=S△ABO+S△ADO列式計(jì)算即可得解;
(3)連接AO,根據(jù)S△ABD=S△ABO-S△ADO列式整理即可得解.
解:(1)在菱形ABCD中,AG=CG,AC⊥BD,BG=BD=×16=8,
由勾股定理得AG=,
所以AC=2AG=2×6=12.
所以菱形ABCD的面積=AC·BD=×12×16=96.
(2)不發(fā)生變化.理由如下:如圖①,連接AO,則S△ABD=S△ABO+S△AOD,
所以BD·AG=AB·OE+AD·OF,
即×16×6=×10·OE+×10·OF.
解得OE+OF=9.6,是定值,不變.
(3)發(fā)生變化.如圖②,連接AO,則S△ABD=S△ABO-S△AOD,
所以BD·AG=AB·OE-AD·OF.
即×16×6=×10·OE-×10·OF.
解得OE-OF=9.6,是定值,不變.
所以OE+OF的值發(fā)生變化,OE,OF之間的數(shù)量關(guān)系為OE-OF=9.6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一動(dòng)點(diǎn)從原點(diǎn)O出發(fā),按向上、向右、向下、向右的方向依次不斷地移動(dòng),每次移動(dòng)一個(gè)單位,得到點(diǎn)A1(0,1)、A2(1,1)、A3(1,0)、A4(2,0),…,那么點(diǎn)A2019的坐標(biāo)為( 。
A. (1008,1)B. (1009,1)C. (1009,0)D. (1010,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為4的菱形ABCD中,BD=4,E、F分別是AD、CD上的動(dòng)點(diǎn)(包含端點(diǎn)),且AE+CF=4,連接BE、EF、FB.
(1)試探究BE與BF的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)求EF的最大值與最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠B=50°,∠C=110°,∠D=90°,AE⊥BC,AF是∠BAD的平分線,與邊BC交于點(diǎn)F.求∠EAF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在四邊形ABCD中,∠A=x°,∠C=y°(0°<x<180°,0°<y<180°).
(1)∠ABC+∠ADC= °.(用含x,y的代數(shù)式表示)
(2)如圖1,若x=y=90°,DE平分∠ADC,BF平分與∠ABC相鄰的外角,請寫出DE與BF的位置關(guān)系,并說明理由.
(3)如圖2,∠DFB為四邊形ABCD的∠ABC、∠ADC相鄰的外角平分線所在直線構(gòu)成的銳角,
①當(dāng)x<y時(shí),若x+y=140°,∠DFB=30°,試求x、y.
②小明在作圖時(shí),發(fā)現(xiàn)∠DFB不一定存在,請直接指出x、y滿足什么條件時(shí),∠DFB不存在.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,我們定義直線為拋物線、b、c為常數(shù),的“夢想直線”;有一個(gè)頂點(diǎn)在拋物線上,另有一個(gè)頂點(diǎn)在y軸上的三角形為其“夢想三角形”.
已知拋物線與其“夢想直線”交于A、B兩點(diǎn)點(diǎn)A在點(diǎn)B的左側(cè),與x軸負(fù)半軸交于點(diǎn)C.
填空:該拋物線的“夢想直線”的解析式為______,點(diǎn)A的坐標(biāo)為______,點(diǎn)B的坐標(biāo)為______;
如圖,點(diǎn)M為線段CB上一動(dòng)點(diǎn),將以AM所在直線為對稱軸翻折,點(diǎn)C的對稱點(diǎn)為N,若為該拋物線的“夢想三角形”,求點(diǎn)N的坐標(biāo);
當(dāng)點(diǎn)E在拋物線的對稱軸上運(yùn)動(dòng)時(shí),在該拋物線的“夢想直線”上,是否存在點(diǎn)F,使得以點(diǎn)A、C、E、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請直接寫出點(diǎn)E、F的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,AD、BD、CD分別平分的外角,內(nèi)角,外角,以下結(jié)論:①;②;③;④,其中正確的結(jié)論有__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】哈爾濱地鐵“二號(hào)線”正在進(jìn)行修建,現(xiàn)有大量的殘土需要運(yùn)輸.某車隊(duì)有載重量為8噸、10噸的卡車共12臺(tái),全部車輛運(yùn)輸一次可以運(yùn)輸110噸殘土.
(1)求該車隊(duì)有載重量8噸、10噸的卡車各多少輛?
(2)隨著工程的進(jìn)展,該車隊(duì)需要一次運(yùn)輸殘土不低于165噸,為了完成任務(wù),該車隊(duì)準(zhǔn)備再新購進(jìn)這兩種卡車共6輛,則最多購進(jìn)載重量為8噸的卡車多少輛?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)是(-2,4),過點(diǎn)A作AB⊥y軸,垂足為B,連接OA.
(1)求△OAB的面積;
(2)若拋物線y=-x2-2x+c經(jīng)過點(diǎn)A.
①求c的值;
②將拋物線向下平移m個(gè)單位長度,使平移后得到的拋物線頂點(diǎn)落在△OAB的內(nèi)部(不包括△OAB的邊界),求m的取值范圍(直接寫出答案即可).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com