如圖11,四邊形ABCD中,點M,N分別在ABBC上,

  將△BMN沿MN翻折,得△FMN,若MFAD,FNDC

  則∠B =    °.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,在四邊形ABCD中,AD=BC,E,F(xiàn),G分別是AB,CD,AC的中點,若∠DAC=20°,∠ACB=66°,則∠FEG等于( 。
A、47°B、46°C、11.5°D、23°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在四邊形ABCD中,∠B=90°,AD∥BC,AB=4,BC=12,點E在邊BA的延長線上,A精英家教網E=2,點F在BC邊上,EF與邊AD相交于點G,DF⊥EF,設AG=x,DF=y.
(1)求y關于x的函數(shù)解析式,并寫出定義域;
(2)當AD=11時,求AG的長;
(3)如果半徑為EG的⊙E與半徑為FD的⊙F相切,求這兩個圓的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源:2010-2011學年度臨沂市費縣七年級第二學期期末檢測數(shù)學 題型:解答題

(11·永州)(本題滿分10分)探究問題:
⑴方法感悟:
如圖①,在正方形ABCD中,點E,F(xiàn)分別為DC,BC邊上的點,且滿足∠EAF=45°,連接EF,求證DE+BF=EF.
感悟解題方法,并完成下列填空:
將△ADE繞點A順時針旋轉90°得到△ABG,此時AB與AD重合,由旋轉可得:
AB="AD,BG=DE," ∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,點G,B,F(xiàn)在同一條直線上.
∵∠EAF="45° " ∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,   ∴∠1+∠3=45°.
即∠GAF=∠_________.
又AG=AE,AF=AF
∴△GAF≌_______.
∴_________=EF,故DE+BF=EF.

⑵方法遷移:
如圖②,將沿斜邊翻折得到△ADC,點E,F(xiàn)分別為DC,BC邊上的點,且∠EAF=∠DAB.試猜想DE,BF,EF之間有何數(shù)量關系,并證明你的猜想.

⑶問題拓展:
如圖③,在四邊形ABCD中,AB=AD,E,F(xiàn)分別為DC,BC上的點,滿足,試猜想當∠B與∠D滿足什么關系時,可使得DE+BF=EF.請直接寫出你的猜想(不必說明理由).

查看答案和解析>>

科目:初中數(shù)學 來源:2013屆度臨沂市費縣七年級第二學期期末檢測數(shù)學 題型:解答題

(11·永州)(本題滿分10分)探究問題:

⑴方法感悟:

如圖①,在正方形ABCD中,點E,F(xiàn)分別為DC,BC邊上的點,且滿足∠EAF=45°,連接EF,求證DE+BF=EF.

感悟解題方法,并完成下列填空:

將△ADE繞點A順時針旋轉90°得到△ABG,此時AB與AD重合,由旋轉可得:

AB=AD,BG=DE, ∠1=∠2,∠ABG=∠D=90°,

∴∠ABG+∠ABF=90°+90°=180°,

因此,點G,B,F(xiàn)在同一條直線上.

∵∠EAF=45°  ∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.

∵∠1=∠2,   ∴∠1+∠3=45°.

即∠GAF=∠_________.

又AG=AE,AF=AF

∴△GAF≌_______.

∴_________=EF,故DE+BF=EF.

⑵方法遷移:

如圖②,將沿斜邊翻折得到△ADC,點E,F(xiàn)分別為DC,BC邊上的點,且∠EAF=∠DAB.試猜想DE,BF,EF之間有何數(shù)量關系,并證明你的猜想.

⑶問題拓展:

如圖③,在四邊形ABCD中,AB=AD,E,F(xiàn)分別為DC,BC上的點,滿足,試猜想當∠B與∠D滿足什么關系時,可使得DE+BF=EF.請直接寫出你的猜想(不必說明理由).

 

查看答案和解析>>

同步練習冊答案