【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A(1,0),B(﹣3,0)兩點(diǎn).
(1)求該拋物線的解析式;
(2)設(shè)(1)中的拋物線交y軸與C點(diǎn),在該拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使得△QAC的周長(zhǎng)最。咳舸嬖,求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)在(1)中的拋物線上的第二象限上是否存在一點(diǎn)P,使△PBC的面積最大?若存在,求出點(diǎn)P的坐標(biāo)及△PBC的面積最大值;若沒(méi)有,請(qǐng)說(shuō)明理由.
【答案】
(1)
解:將A(1,0),B(﹣3,0)代y=﹣x2+bx+c中得
∴ (3分)
∴拋物線解析式為:y=﹣x2﹣2x+3
(2)
解:存在
理由如下:由題知A、B兩點(diǎn)關(guān)于拋物線的對(duì)稱軸x=﹣1對(duì)稱
∴直線BC與x=﹣1的交點(diǎn)即為Q點(diǎn),此時(shí)△AQC周長(zhǎng)最小
∵y=﹣x2﹣2x+3
∴C的坐標(biāo)為:(0,3)
直線BC解析式為:y=x+3
Q點(diǎn)坐標(biāo)即為
解得
∴Q(﹣1,2)
(3)
解:存在.
理由如下:設(shè)P點(diǎn)(x,﹣x2﹣2x+3)(﹣3<x<0)
∵S△BPC=S四邊形BPCO﹣S△BOC=S四邊形BPCO﹣
若S四邊形BPCO有最大值,則S△BPC就最大,
∴S四邊形BPCO=S△BPE+S直角梯形PEOC
= BEPE+ OE(PE+OC)
= (x+3)(﹣x2﹣2x+3)+ (﹣x)(﹣x2﹣2x+3+3)
=
當(dāng)x=﹣ 時(shí),S四邊形BPCO最大值=
∴S△BPC最大=
當(dāng)x=﹣ 時(shí),﹣x2﹣2x+3=
∴點(diǎn)P坐標(biāo)為(﹣ , )
【解析】(1)根據(jù)題意可知,將點(diǎn)A、B代入函數(shù)解析式,列得方程組即可求得b、c的值,求得函數(shù)解析式;(2)根據(jù)題意可知,邊AC的長(zhǎng)是定值,要想△QAC的周長(zhǎng)最小,即是AQ+CQ最小,所以此題的關(guān)鍵是確定點(diǎn)Q的位置,找到點(diǎn)A的對(duì)稱點(diǎn)B,求得直線BC的解析式,求得與對(duì)稱軸的交點(diǎn)即是所求;(3)存在,設(shè)得點(diǎn)P的坐標(biāo),將△BCP的面積表示成二次函數(shù),根據(jù)二次函數(shù)最值的方法即可求得點(diǎn)P的坐標(biāo).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E在△ABC的外部,點(diǎn)D邊BC上,DE交AC于點(diǎn)F,若∠1=∠2,AE=AC,BC=DE.
(1)求證:AB=AD;
(2)若∠1=60°,判斷△ABD的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣6,0)、B(﹣2,3)、
C(﹣1,0).
(1)請(qǐng)直接寫(xiě)出與點(diǎn)B關(guān)于坐標(biāo)原點(diǎn)O的對(duì)稱點(diǎn)B1的坐標(biāo);
(2)將△ABC繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°.畫(huà)出對(duì)應(yīng)的△A′B′C′圖形,直接寫(xiě)出點(diǎn)A的對(duì)應(yīng)點(diǎn)A′的坐標(biāo);
(3)若四邊形A′B′C′D′為平行四邊形,請(qǐng)直接寫(xiě)出第四個(gè)頂點(diǎn)D′的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,則下列結(jié)論:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④BE+AC=AB.其中正確的有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P是正三角形ABC內(nèi)的一點(diǎn),且PA=5,PB=12,PC=13,若將△PAC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)后,得到△P′AB,求點(diǎn)P與點(diǎn)P′之間的距離及∠APB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊△ABC中,點(diǎn)D為△ABC內(nèi)的一點(diǎn),∠ADB=120°,∠ADC=90°,將△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得△ACE,連接DE.
(1)求證:AD=DE;
(2)求∠DCE的度數(shù);
(3)若BD=1,求AD,CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“足球運(yùn)球”是中考體育必考項(xiàng)目之一.蘭州市某學(xué)校為了解今年九年級(jí)學(xué)生足球運(yùn)球的掌握情況,隨機(jī)抽取部分九年級(jí)學(xué)生足球運(yùn)球的測(cè)試成績(jī)作為一個(gè)樣本,按A,B,C,D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),制成了如下不完整的統(tǒng)計(jì)圖.(說(shuō)明:A級(jí):8分﹣10分,B級(jí):7分﹣7.9分,C級(jí):6分﹣6.9分,D級(jí):1分﹣5.9分)
根據(jù)所給信息,解答以下問(wèn)題:
(1)在扇形統(tǒng)計(jì)圖中,C對(duì)應(yīng)的扇形的圓心角是_____度;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)所抽取學(xué)生的足球運(yùn)球測(cè)試成績(jī)的中位數(shù)會(huì)落在_____等級(jí);
(4)該校九年級(jí)有300名學(xué)生,請(qǐng)估計(jì)足球運(yùn)球測(cè)試成績(jī)達(dá)到A級(jí)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABM與△CDM是兩個(gè)全等的等邊三角形,MA⊥MD.有下列四個(gè)結(jié)論:(1)∠MBC=25°;(2)∠ADC+∠ABC=180°;(3)直線MB垂直平分線段CD;(4)四邊形ABCD是軸對(duì)稱圖形.其中正確結(jié)論的個(gè)數(shù)為( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(﹣3,0),與y軸交于點(diǎn)C,點(diǎn)D(﹣2,﹣3)在拋物線上.
(1)求拋物線的解析式;
(2)拋物線的對(duì)稱軸上有一動(dòng)點(diǎn)P,求出PA+PD的最小值;
(3)若拋物線上有一動(dòng)點(diǎn)P,使三角形ABP的面積為6,求P點(diǎn)坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com