【題目】我們在過去的學(xué)習(xí)中已經(jīng)發(fā)現(xiàn)了如下的運算規(guī)律:

(1)15×151×2×10025225;

(2)25×252×3×10025625

(3)35×353×4×100251225

……

按照這種規(guī)律,第n個式子可以表示為

A. n×n×(1)×10025n2

B. n×n×(1)×10025n2

C. (n5)×(n5)n×(n1)×10025n210n25

D. (10n5)×(10n5)n×(nl)×l0025100n2100n25

【答案】D

【解析】

根據(jù)已知的等式即可判斷規(guī)律.

(1)15×151×2×10025225,即(105)×(105)1×(1l)×l002510010025

(2)25×252×3×10025625(10×25)×(10×25)2×(2l)×l0025100×22100×225

(3)35×353×4×100251225(10×35)×(10×35)2×(3l)×l0025100×32100×325

∴第n個式子可以為(10n5)×(10n5)n×(nl)×l0025100n2100n25

故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,E是AD的中點,AB=8 ,F(xiàn)是線段CE上的動點,則BF的最小值是( )

A.10
B.12
C.16
D.18

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=2,∠DAB=60°,EAD邊的中點,點MAB邊上一動點(不與點A重合),延長ME交射線CD于點N,連接MD,AN.

1)求證:四邊形AMDN是平行四邊形;

2)填空:當(dāng)AM的值為 時,四邊形AMDN是矩形;當(dāng)AM的值為 時,四邊形AMDN是菱形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖 1,在ABC 中,ACB90°BCAC,點 D AB 上,DEAB BC E,點 F AE 的中點

1 寫出線段 FD 與線段 FC 的關(guān)系并證明;

2 如圖 2,將BDE 繞點 B 逆時針旋轉(zhuǎn)αα90°),其它條件不變,線段 FD 與線段 FC 的關(guān)系是否變化,寫出你的結(jié)論并證明;

3 BDE 繞點 B 逆時針旋轉(zhuǎn)一周,如果 BC4BE2,直接寫出線段 BF 的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠180°,∠2100°,∠C=∠D

1)判斷ACDF的位置關(guān)系,并說明理由;

2)若∠C比∠A20°,求∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】3分)以下四種沿AB折疊的方法中,不一定能判定紙帶兩條邊線a,b互相平行的是( )

A. 如圖1,展開后測得∠1=∠2

B. 如圖2,展開后測得∠1=∠2∠3=∠4

C. 如圖3,測得∠1=∠2

D. 如圖4,展開后再沿CD折疊,兩條折痕的交點為O,測得OA=OBOC=OD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=ax2﹣2ax﹣1(a是常數(shù),a≠0),下列結(jié)論正確的是( )
A.當(dāng)a=1時,函數(shù)圖象過點(﹣1,1)
B.當(dāng)a=﹣2時,函數(shù)圖象與x軸沒有交點
C.若a>0,則當(dāng)x≥1時,y隨x的增大而減小
D.若a<0,則當(dāng)x≤1時,y隨x的增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,已知∠BDC=∠EFD,∠AED=∠ACB

1)試判斷∠DEF與∠B的大小關(guān)系,并說明理由;

2)若D、E、F分別是AB、AC、CD邊上的中點,SDEF4,SABC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,矩形 ABCO,B點坐標(biāo)為(4,3),拋物線y=
經(jīng)過矩形ABCO的頂點 B 、C ,D為BC的中點,直線 AD y軸交 E點,與拋物線 交于第四象限的 F點.

(1)求該拋物線解析式與F點坐標(biāo);
(2)如圖2,動點P從點C出發(fā),沿線段 CB以每秒1個單位長度的速度向終點B運動;同時,動點M從 A出發(fā),沿線 AE以每秒 個單位長度的速度向終點E運動.過點P作PH ⊥OA,垂足為H ,連接 MP ,MH .設(shè)點 P 的運動時間 t秒.
①問EP+ PH+ HF是否有最小值?如果有,求出t的值;如果沒有,請說明理由.
②若△PMH是等腰三角形,請直接寫出此時t的值.

查看答案和解析>>

同步練習(xí)冊答案