在平面直角坐標系中,點,,,…和,,,…分別在直線和軸上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2(),那么點的縱坐標是_ _____.
.
解析試題分析:利用待定系數法求一次函數解析式求出直線的解析式,再求出直線與x軸、y軸的交點坐標,求出直線與x軸的夾角的正切值,分別過等腰直角三角形的直角頂點向x軸作垂線,然后根據等腰直角三角形斜邊上的高線與中線重合并且等于斜邊的一半,利用正切值列式依次求出三角形的斜邊上的高線,即可得到各點的縱坐標的規(guī)律.
試題解析:如圖:
∵A1(1,1),A2(,)在直線y=kx+b上,
∴,
解得.
∴直線解析式為,
如圖,設直線與x軸、y軸的交點坐標分別為N、M,
當x=0時,y=,
當y=0時,,解得x=-4,
∴點M、N的坐標分別為M(0,),N(-4,0),
∴tan∠MNO=,
作A1C1⊥x軸與點C1,A2C2⊥x軸與點C2,A3C3⊥x軸與點C3,
∵A1(1,1),A2(,),
∴OB2=OB1+B1B2=2×1+2×=2+3=5,
tan∠MNO=,
∵△B2A3B3是等腰直角三角形,
∴A3C3=B2C3,
∴A3C3=,
同理可求,第四個等腰直角三角形A4C4=,
依此類推,點An的縱坐標是.
考點:一次函數綜合題.
科目:初中數學 來源:新人教版(2012) 七年級上 題型:
|
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
新定義:[a,b,c]為函數y=ax2+bx+c (a,b,c為實數)的“關聯數”.若“關聯數”為[m-2,m,1]的函數為一次函數,則m的值為 .
查看答案和解析>>
科目:初中數學 來源: 題型:單選題
(2013年四川南充3分) 如圖1,點E為矩形ABCD邊AD上一點,點P,點Q同時從點B出發(fā),點P沿BE→ED→DC 運動到點C停止,點Q沿BC運動到點C停止,它們運動的速度都是1cm/s,設P,Q出發(fā)t秒時,△BPQ的面積為ycm,已知y與t的函數關系的圖形如圖2(曲線OM為拋物線的一部分),則下列結論:①AD=BE=5cm;②當0<t≤5時,;③直線NH的解析式為;④若△ABE與△QBP相似,則t=秒。其中正確的結論個數為【 】
A.4 | B.3 | C.2 | D.1 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com