【題目】如圖,在平行四邊形ABCD中,∠ABC的平分線BF分別與AC、AD交于點E、F.
(1)求證:AB=AF;
(2)當AB=3,BC=4時,求的值.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,將矩形OABC置于平面直角坐標系中,點A,C分別在x,y軸的正半軸上,已知點B(4,2),將矩形OABC翻折,使得點C的對應(yīng)點P恰好落在線段OA(包括端點O,A)上,折痕所在直線分別交BC、OA于點D、E;若點P在線段OA上運動時,過點P作OA的垂線交折痕所在直線于點Q.設(shè)點Q的坐標為(x,y),則y關(guān)于x的函數(shù)關(guān)系式是_______________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是一塊銳角三角形余料,邊BC=120 mm,高AD=80mm,要把它加工成矩形零件PQMN,使矩形PQMN的邊QM在BC上,其余兩個項點P,N分別在AB,AC上.
(1)當矩形的邊PN=PQ時,求此時矩形零件PQMN的面積;
(2)求這個矩形零件PQMN面積S的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖坐標系中,O(0,0),A(6,6),B(12,0),將△OAB沿直線CD折疊,使點A恰好落在線段OB上的點E處,若OE=,則AC:AD的值是( 。
A.1:2B.2:3C.6:7D.7:8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若一個三角形一條邊的平方等于另兩條邊的乘積,我們稱這個三角形是比例三角形.
(1)已知△ABC是比例三角形,AB=1,BC=2,求AC的長.
(2)如圖1,在四邊形ABCD中,AB=AD,對角線BD平分∠ABC,∠BAC=∠ADC
①求證:△ABC是比例三角形
②若AB∥DC,如圖2,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=-x2+bx+c與x軸交于A、B兩點,且B點的坐標為(3,0),經(jīng)過A點的直線交拋物線于點D (2, 3).
(1)求拋物線的解析式和直線AD的解析式;
(2)過x軸上的點E (a,0) 作直線EF∥AD,交拋物線于點F,是否存在實數(shù)a,使得以A、D、E、F為頂點的四邊形是平行四邊形?如果存在,求出滿足條件的a;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為調(diào)查我市民上班時最常用的交通工具的情況隨機抽取了部分市民進行調(diào)查,要求被調(diào)查者從“A:自行車,B:電動車,C:公交車,D:家庭汽車;E.其他”中選擇最常用的一項.將所有調(diào)查結(jié)果整理后繪制成如下不完整計圖,請結(jié)合統(tǒng)計圖回答下列問題:
(1)本次一共調(diào)查了 名市民;扇形統(tǒng)計圖中B項對應(yīng)的圓心角是 度;
(2)補全條形統(tǒng)計圖;
(3)若甲、乙兩人上班時從A、B、C、D四種交通工具中隨或畫樹狀圖的方法,求出甲、乙兩人恰好選擇同一種交通工具上班的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個不透明袋子中有個紅球,個綠球和個白球,這些球除顏色外無其他差別,
當時,從袋中隨機摸出個球,摸到紅球和摸到白球的可能性 (填“相同”或“不相同”);
從袋中隨機摸出一個球,記錄其顏色,然后放回,大量重復(fù)該實驗,發(fā)現(xiàn)摸到綠球的頻率穩(wěn)定于,則的值是 ;
在的情況下,如果一次摸出兩個球,請用樹狀圖或列表法求摸出的兩個球顏色不同的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點P是邊AC上一點,過點P作PQ∥AB交BC于點Q,D為線段PQ的中點,BD平分∠ABC,以下四個結(jié)論①△BQD是等腰三角形;②BQ=DP;③PA=QP;④=(1+)2;其中正確的結(jié)論的個數(shù)( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com