在平面直角坐標系xOy中,二次函數(shù)y=-x2+(m-1)x+4m的圖象與x軸負半軸交于點A,與y軸交于點B(0,4),已知點E(0,1).

(1)求m的值及點A的坐標;
(2)如圖,將△AEO沿x軸向右平移得到△A′E′O′,連結(jié)A′B、BE′.
①當點E′落在該二次函數(shù)的圖象上時,求AA′的長;
②設AA′=n,其中0<n<2,試用含n的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值時點E′的坐標;
③當A′B+BE′取得最小值時,求點E′的坐標.
(1)m="1,A(-2,0);" (2)①,②點E′的坐標是(1,1),③點E′的坐標是(,1).

試題分析:(1)將點代入解析式即可求出m的值,這樣寫出函數(shù)解析式,求出A點坐標;
(2)①將E點的坐標代入二次函數(shù)解析式,即可求出AA′;②連接EE′,構造直角三角形,利用勾股定理即可求出A′B2+BE′當n=1時,其最小時,即可求出E′的坐標;③過點A作AB′⊥x軸,并使AB′ =" BE" = 3.易證△AB′A′≌△EBE′,當點B,A′,B′在同一條直線上時,A′B + B′A′最小,即此時A′B+BE′取得最小值.易證△AB′A′∽△OBA′,由相似就可求出E′的坐標
試題解析:
解:(1)由題意可知4m=4,m=1.
∴二次函數(shù)的解析式為
∴點A的坐標為(-2,0).
(2)①∵點E(0,1),由題意可知,

解得
∴AA′=
②如圖,連接EE′.

由題設知AA′=n(0<n<2),則A′O=2-n.
在Rt△A′BO中,由A′B2=A′O2+BO2,
得A′B2=(2–n)2+42=n2-4n+20.
∵△A′E′O′是△AEO沿x軸向右平移得到的,
∴EE′∥AA′,且EE′=AA′.
∴∠BEE′=90°,EE′=n.
又BE=OB-OE=3.
∴在Rt△BE′E中,BE′2=E′E2+BE2=n2+9,
∴A′B2+BE′2=2n2-4n+29=2(n–1)2+27.
當n=1時,A′B2+BE′2可以取得最小值,此時點E′的坐標是(1,1).
③如圖,過點A作AB′⊥x軸,并使AB′=BE=3.
易證△AB′A′≌△EBE′,
∴B′A′=BE′,
∴A′B+BE′=A′B+B′A′.
當點B,A′,B′在同一條直線上時,A′B+B′A′最小,即此時A′B+BE′取得最小值.
易證△AB′A′∽△OBA′,
,
∴AA′=,
∴EE′=AA′=,
∴點E′的坐標是(,1).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

平面直角坐標系xOy中,拋物線y=ax2-4ax+4a+c與x軸交于點A、B,與y軸的正半軸交于點C,點A的坐標為(1,0),OB=OC.

(1)求此拋物線的解析式;
(2)若點P是線段BC上的一個動點,過點P作y軸的平行線與拋物線在x軸下方交于點Q,試問線段PQ的長度是否存在最大值?若存在,求出其最大值;若不存在,請說明理由;
(3)若此拋物線的對稱軸上的點M滿足∠AMC=45°,求點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

將拋物線y=3x2向左平移2個單位后得到的拋物線的解析式為( 。
A.y=3(x+2)2B.y=3(x-2)2 C.y=3x2+2D.y=3x2-2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某批發(fā)商以每件50元的價格購進400件T恤.若以單價70元銷售,預計可售出200件.批發(fā)商的銷售策略是:第一個月為增加銷售量,降價銷售,經(jīng)過市場調(diào)查,單價每降低0.5元,可多售出5件,但最低單價不低于購進的價格;第一個月結(jié)束后,將剩余的T恤一次性清倉銷售,清倉時單價為40元.設第一個月單價降低x元.
(1)根據(jù)題意,完成下表:
 
每件T恤的利潤(元)
銷售量(件)
第一個月
 
 
清倉時
 
 
(2)T恤的銷售單價定為多少元時,該批發(fā)商可獲得最大利潤?最大利潤為多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,矩形ABCD中,AB=16cm,AD=4cm,點P、Q分別從A、B同時出發(fā),點P在邊AB上沿AB方向以2cm/s的速度勻速運動,點Q在邊BC上沿BC方向以1cm/s的速度勻速運動,當其中一點到達終點時,另一點也隨之停止運動.設運動時間為x秒,△PBQ的面積為y(cm2).

(1)求y關于x的函數(shù)關系式,并寫出x的取值范圍;
(2)求△PBQ的面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,AB為半圓的直徑,點P為AB上一動點.動點P從點A 出發(fā),沿AB勻速運動到點B,運動時間為t.分別以AP與PB為直徑作半圓,則圖中陰影部分的面積S與時間t之間的函數(shù)圖象大致為(   )


A.                  B.                C.             D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

把拋物線y=x2向左平移1個單位,所得的新拋物線的函數(shù)表達式為( )
A.y=x2+1B.y=(x+1) 2C.y=x2-1D.y=(x-1) 2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

次函數(shù)取最大值時,x=                  .

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知二次函數(shù)中,其函數(shù)與自變量之間的部分對應值如下表所示:
x

0
1
2
3
4

y

4
1
0
1
4

點A(,)、B(,)在函數(shù)的圖象上,則當時,的大小關系正確的是
A.    B.    C.     D.

查看答案和解析>>

同步練習冊答案