將一段72cm長(zhǎng)的繩子,從一端開始每3cm作一記號(hào),每4cm也作一記號(hào),然后從有記號(hào)的地方剪斷,則這段繩子共被剪成的段數(shù)為


  1. A.
    37
  2. B.
    36
  3. C.
    35
  4. D.
    34
B
分析:先求出每3厘米作一個(gè)記號(hào),可以作幾個(gè)記號(hào);再求出每4厘米作一個(gè)記號(hào),可以作幾個(gè)記號(hào);因?yàn)?和4的最小公倍數(shù)是12,所以每12厘米處的記號(hào)重合,由此即可求出繩子被剪出的段數(shù).
解答:∵繩子長(zhǎng)72cm,
∴每3cm作一記號(hào),可以把繩子平均分成72÷3=24(段),可以做24-1=23個(gè)記號(hào),
每4cm也作一記號(hào),可以把繩子平均分成72÷4=18(段),可以做18-1=17個(gè)記號(hào),
∵3和4的最小公倍數(shù)是12,所以重合的記號(hào)有:
72÷12-1=5(個(gè)),
∴有記號(hào)的地方共有23+17-5=35,
∴這段繩子共被剪成的段數(shù)為35+1=36(段).
故選:B.
點(diǎn)評(píng):此題主要考查了線段,關(guān)鍵是正確理解每3厘米、4厘米作一個(gè)記號(hào),可以作幾個(gè)記號(hào),有多少的記號(hào)重合.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

將一條40cm長(zhǎng)的金色彩帶剪成兩段,恰好可用來鑲嵌兩張大小不同的正方形壁畫的邊(不計(jì)接頭處),已知兩張壁畫的面積相差40cm2,問這條金色彩帶應(yīng)剪成多長(zhǎng)的兩段?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:044

如果有一根很長(zhǎng)的繩子,它能繞地球赤道一周(約4萬千米長(zhǎng)).利用計(jì)算器探索,將這根繩子連續(xù)對(duì)折多少次后能使每段繩長(zhǎng)小于1米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:022

將一條5m長(zhǎng)的繩子任意剪成兩條,則這兩段繩子的長(zhǎng)度都不小于1m的概率為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:068

將一條5m長(zhǎng)的繩子任意剪成兩條,則這兩段繩子的長(zhǎng)度都不小于1m的概率為________.

查看答案和解析>>

同步練習(xí)冊(cè)答案