(2008•嘉興)如圖,△ABC中,已知AB=8,BC=6,CA=4,DE是中位線,則DE=( )

A.4
B.3
C.2
D.1
【答案】分析:由D,E分別是邊AB,AC的中點,首先判定DE是三角形的中位線,然后根據(jù)三角形的中位線定理求得DE的值即可.
解答:解:∵DE是△ABC的中位線,
∴DE=BC,
∵BC=6,
∴DE=BC=3.
故選B.
點評:考查了三角形的中位線定理,根據(jù)定理確定DE等于那一邊的一半是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(05)(解析版) 題型:解答題

(2008•嘉興)如圖,直角坐標(biāo)系中,已知兩點O(0,0),A(2,0),點B在第一象限且△OAB為正三角形,△OAB的外接圓交y軸的正半軸于點C,過點C的圓的切線交x軸于點D.
(1)求B,C兩點的坐標(biāo);
(2)求直線CD的函數(shù)解析式;
(3)設(shè)E,F(xiàn)分別是線段AB,AD上的兩個動點,且EF平分四邊形ABCD的周長.試探究:△AEF的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年浙江省嘉興市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•嘉興)如圖,直角坐標(biāo)系中,已知兩點O(0,0),A(2,0),點B在第一象限且△OAB為正三角形,△OAB的外接圓交y軸的正半軸于點C,過點C的圓的切線交x軸于點D.
(1)求B,C兩點的坐標(biāo);
(2)求直線CD的函數(shù)解析式;
(3)設(shè)E,F(xiàn)分別是線段AB,AD上的兩個動點,且EF平分四邊形ABCD的周長.試探究:△AEF的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年浙江省嘉興市數(shù)學(xué)素質(zhì)評估卷6(秀洲區(qū)塘匯實驗學(xué)校命題)(解析版) 題型:選擇題

(2008•嘉興)如圖,△ABC中,已知AB=8,BC=6,CA=4,DE是中位線,則DE=( )

A.4
B.3
C.2
D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年浙江省嘉興市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•嘉興)如圖,正方形網(wǎng)格中,△ABC為格點三角形(頂點都是格點),將△ABC繞點A按逆時針方向旋轉(zhuǎn)90°得到△AB1C1
(1)在正方形網(wǎng)格中,作出△AB1C1;
(2)設(shè)網(wǎng)格小正方形的邊長為1,求旋轉(zhuǎn)過程中動點B所經(jīng)過的路徑長.

查看答案和解析>>

同步練習(xí)冊答案