【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)l的函數(shù)表達(dá)式為y=x,點(diǎn)O1的坐標(biāo)為(10),以O1為圓心,O1O為半徑畫(huà)半圓,交直線(xiàn)l于點(diǎn)P1,交x軸正半軸于點(diǎn)O2,由弦P1O2圍成的弓形面積記為S1,以O2為圓心,O2O為半徑畫(huà)圓,交直線(xiàn)l于點(diǎn)P2,交x軸正半軸于點(diǎn)O3,由弦P2O3和圍成的弓形面積記為S2,以O3為圓心,O3O為半徑畫(huà)圓,交直線(xiàn)l于點(diǎn)P3,交x軸正半軸于點(diǎn)O4,由弦P3O4圍成的弓形面積記為S3;按此做法進(jìn)行下去,其中S2018的面積為__________

【答案】

【解析】

連接P1O1,根據(jù)直線(xiàn)的函數(shù)解析式與特殊角的三角函數(shù)值得到∠P1OO1=30°,則∠P1O1O2=60°,再根據(jù)扇形面積公式與等邊三角形的面積公式求得S1,S2,S3S4找到規(guī)律,然后求解S2018即可.

解:如圖,連接P1O1,

∵直線(xiàn)l的函數(shù)表達(dá)式為y=x

tan P1OO1=,

∴∠P1OO1=30°,

∴∠P1O1O2=60°,

S1==,

同理可得S2=,

S3=,

S4==

······

Sn=,

則當(dāng)n=2018時(shí),

S2018=.

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線(xiàn)AC的表達(dá)式為yx8,點(diǎn)P從點(diǎn)A開(kāi)始沿AO向點(diǎn)O1個(gè)單位/s的速度移動(dòng),點(diǎn)Q從點(diǎn)O開(kāi)始沿OC向點(diǎn)C2個(gè)單位/s的速度移動(dòng).如果P,Q兩點(diǎn)分別從點(diǎn)A,O同時(shí)出發(fā),經(jīng)過(guò)幾秒能使PQO的面積為8個(gè)平方單位?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】校園安全受到全社會(huì)的廣泛關(guān)注,我市某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問(wèn)題:

(1)接受問(wèn)卷調(diào)查的學(xué)生共有_______人,扇形統(tǒng)計(jì)圖中基本了解部分所對(duì)應(yīng)扇形的圓心角為_______°;

(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若該中學(xué)共有學(xué)生1800人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)校園安全知識(shí) 達(dá)到了解基本了解程度的總?cè)藬?shù);

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直角坐標(biāo)系中,A是反比例函數(shù)yx0)圖象上一點(diǎn),By軸正半軸上一點(diǎn),以OA,AB為鄰邊作ABCO.若點(diǎn)CBC中點(diǎn)D都在反比例函數(shù)yk0x0)圖象上,則k的值為( 。

A. 3B. 4C. 6D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某茶葉銷(xiāo)售商計(jì)劃將m罐茶葉按甲、乙兩種禮品盒包裝出售,其中甲種禮品盒每盒裝4罐,每盒售價(jià)240元;乙種禮品盒每盒裝6罐,每盒售價(jià)300元,恰好全部裝完.已知每罐茶葉的成本價(jià)為30元,設(shè)甲種禮品盒的數(shù)量為x盒,乙種禮品盒的數(shù)量為y.

(1)當(dāng)m=120時(shí).

①求y關(guān)于x的函數(shù)關(guān)系式.

②若120罐茶葉全部售出后的總利潤(rùn)不低于3000元,則甲種禮品盒的數(shù)量至少要多少盒?

(2)m罐茶葉全部售出后平均每罐的利潤(rùn)恰好為24元,且甲、乙兩種禮品盒的數(shù)量和不超過(guò)69盒,求m的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著手機(jī)普及率的提高,有些人開(kāi)始過(guò)分依賴(lài)手機(jī),一天中使用手機(jī)時(shí)間過(guò)長(zhǎng)而形成了“手機(jī)癮”,某校學(xué)生會(huì)為了了解本校初三年級(jí)的手機(jī)使用情況,隨機(jī)調(diào)查了部分學(xué)生的手機(jī)使用時(shí)間,將調(diào)查結(jié)果分成五類(lèi):

A、基本不用;B、平均每天使用1~2h;C、平均每天使用2~4h;D、平均每天使用4~6h;E、平均每天使用超過(guò)6h,并根據(jù)統(tǒng)計(jì)結(jié)果繪制成了如下兩幅不完整的統(tǒng)計(jì)圖.

(1)學(xué)生會(huì)一共調(diào)查了多少名學(xué)生?

(2)此次調(diào)查的學(xué)生中屬于E類(lèi)的學(xué)生有   人,并補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若一天中手機(jī)使用時(shí)間超過(guò)6h,則患有嚴(yán)重的“手機(jī)癮”,該校初三學(xué)生共有900人,請(qǐng)估計(jì)該校初三年級(jí)中患有嚴(yán)重的“手機(jī)癮”的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),Bx軸上,四邊形OACB為平行四邊形,且

AOB=60°,反比例函數(shù)k>0)在第一象限內(nèi)過(guò)點(diǎn)A,且與BC交于點(diǎn)F。當(dāng)FBC的中點(diǎn),且SAOF=12 時(shí),OA的長(zhǎng)為____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】宜居襄陽(yáng)是我們的共同愿景,空氣質(zhì)量備受人們關(guān)注.我市某空氣質(zhì)量監(jiān)測(cè)站點(diǎn)檢測(cè)了該區(qū)域每天的空氣質(zhì)量情況,統(tǒng)計(jì)了20131月份至4月份若干天的空氣質(zhì)量情況,并繪制了如下兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:

1)統(tǒng)計(jì)圖共統(tǒng)計(jì)了   天的空氣質(zhì)量情況;

2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;空氣質(zhì)量為優(yōu)所在扇形的圓心角度數(shù)是   ;

3)從小源所在環(huán)保興趣小組4名同學(xué)(2名男同學(xué),2名女同學(xué))中,隨機(jī)選取兩名同學(xué)去該空氣質(zhì)量監(jiān)測(cè)站點(diǎn)參觀,則恰好選到一名男同學(xué)和一名女同學(xué)的概率是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,,連結(jié)AC,過(guò)點(diǎn)C作直線(xiàn)lAB,點(diǎn)P是直線(xiàn)l上的一個(gè)動(dòng)點(diǎn),直線(xiàn)PA與⊙O交于另一點(diǎn)D,連結(jié)CD,設(shè)直線(xiàn)PB與直線(xiàn)AC交于點(diǎn)E.

(1)求∠BAC的度數(shù);

(2)當(dāng)點(diǎn)DAB上方,且CDBP時(shí),求證:PC=AC;

(3)在點(diǎn)P的運(yùn)動(dòng)過(guò)程中

①當(dāng)點(diǎn)A在線(xiàn)段PB的中垂線(xiàn)上或點(diǎn)B在線(xiàn)段PA的中垂線(xiàn)上時(shí),求出所有滿(mǎn)足條件的∠ACD的度數(shù);

②設(shè)⊙O的半徑為6,點(diǎn)E到直線(xiàn)l的距離為3,連結(jié)BD,DE,直接寫(xiě)出BDE的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案