【題目】某校為了解八年級男生“立定跳遠”成績的情況,隨機選取該年級部分男生進行測試,以下是根據(jù)測試成績繪制的統(tǒng)計圖表的一部分.
成績等級 | 頻數(shù)(人) | 頻率 |
優(yōu)秀 | 15 | 0.3 |
良好 | ||
及格 | ||
不及格 | 5 |
根據(jù)以上信息,解答下列問題
(1)被測試男生中,成績等級為“優(yōu)秀”的男生人數(shù)為 人,成績等級為“及格”的男生人數(shù)占被測試男生總?cè)藬?shù)的百分比為 %;
(2)被測試男生的總?cè)藬?shù)為 人,成績等級為“不及格”的男生人數(shù)占被測試男生總?cè)藬?shù)的百分比為 %;
(3)若該校八年級共有180名男生,根據(jù)調(diào)查結(jié)果,估計該校八年級男生成績等級為“良好”的學(xué)生人數(shù).
【答案】(1)15,90;(2)50,10;(3)72人
【解析】
(1)由統(tǒng)計圖表可知,成績等級為“優(yōu)秀”的男生人數(shù)為15人,被測試男生總數(shù)15÷0.3=50(人),成績等級為“及格”的男生人數(shù)占被測試男生總?cè)藬?shù)的百分比:
(2)被測試男生總數(shù)15÷0.3=50(人),成績等級為“不及格”的男生人數(shù)占被測試男生總?cè)藬?shù)的百分比:
(3)由(1)(2)可知,優(yōu)秀30%,及格20%,不及格10%,則良好40%,該校八年級男生成績等級為“良好”的學(xué)生人數(shù)180×40%=72(人).
解:(1)由統(tǒng)計圖表可知,成績等級為“優(yōu)秀”的男生人數(shù)為15人,
被測試男生總數(shù)(人),
成績等級為“及格”的男生人數(shù)占被測試男生總?cè)藬?shù)的百分比:,
故答案為15,90;
(2)被測試男生總數(shù)(人),
成績等級為“不及格”的男生人數(shù)占被測試男生總?cè)藬?shù)的百分比:,
故答案為50,10;
(3)由(1)(2)可知,優(yōu)秀,及格,不及格,則良好,
該校八年級男生成績等級為“良好”的學(xué)生人數(shù)(人)
答:該校八年級男生成績等級為“良好”的學(xué)生人數(shù)72人.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1:y=kx+b與雙曲線y=(x>0)交于A,B兩點,與x軸交于點C,與y軸交于點E,已知點A(1,3),點C(4,0).
(1)求直線l1和雙曲線的解析式;
(2)將△OCE沿直線l1翻折,點O落在第一象限內(nèi)的點H處,求點H的坐標;
(3)如圖,過點E作直線l2:y=3x+4交x軸的負半軸于點F,在直線l2上是否存在點P,使得S△PBC=S△OBC?若存在,請直接寫出所有符合條件的點P的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,△ABC中,∠C=90°,E為BC邊中點.
(1)尺規(guī)作圖:以AC為直徑,作⊙O,交AB于點D(保留作圖痕跡,不需寫作法).
(2)連結(jié)DE,求證:DE為⊙O的切線;
(3)若AC=5,DE=,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△AOB和△COD均為等腰直角三角形,∠AOB=∠COD=90°,AO=4,CO=2,接連接AD,BC、點H為BC中點,連接OH.
(1)如圖1所示,求證:OH=AD且OH⊥AD;
(2)將△COD繞點O旋轉(zhuǎn)到圖2所示位置時,線段OH與AD又有怎樣的關(guān)系,證明你的結(jié)論;
(3)請直接寫出線段OH的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形中,是上一點,點從點沿折線運動到點時停止;點從點沿運動到點時停止,速度均為每秒1個單位長度.如果點,同時開始運動,設(shè)運動時間為,的面積為,已知與的函數(shù)圖象如圖2所示,有以下結(jié)論:
①;
②;
③當時,;
④當時,是等腰三角形;
⑤當時,.
其中正確的有( ).
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸交于點,與軸交于點,將線段繞點順時針旋轉(zhuǎn)90°得到線段,反比例函數(shù)的圖象經(jīng)過點.
(1)求直線和反比例函數(shù)的解析式;
(2)已知點是反比例函數(shù)圖象上的一個動點,求點到直線距離最短時的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C = 90°,點O是斜邊AB上一定點,到點O的距離等于OB的所有點組成圖形W,圖形W與AB,BC分別交于點D,E,連接AE,DE,∠AED=∠B.
(1)判斷圖形W與AE所在直線的公共點個數(shù),并證明.
(2)若,,求OB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),已知小正方形ABCD的面積為1,把它的各邊延長一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1邊長按原法延長一倍得到正方形A2B2C2D2(如圖(2));正方形A2B2C2D2的面積為________,以此下去…,則正方形AnBnCnDn的面積為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在中,∠B=90°,,點D,E分別是邊BC,AC的中點,連接將繞點C按順時針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為.
問題發(fā)現(xiàn):
當時,_____;當時,_____.
拓展探究:
試判斷:當時,的大小有無變化?請僅就圖2的情況給出證明.
問題解決:
當旋轉(zhuǎn)至A、D、E三點共線時,直接寫出線段BD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com