如圖,⊙O′與x軸交于A、B兩點(diǎn),與y軸交于C、D兩點(diǎn),圓心O′的坐標(biāo)為(1,-1),半徑精英家教網(wǎng)
5

(1)求A,B,C,D四點(diǎn)的坐標(biāo);
(2)求經(jīng)過(guò)點(diǎn)D的切線解析式;
(3)問(wèn)過(guò)點(diǎn)A的切線與過(guò)點(diǎn)D的切線是否垂直?若垂直,請(qǐng)寫出證明過(guò)程;若不垂直,試說(shuō)明理由.
分析:(1)過(guò)O′作O′H⊥x軸于H,連接OB,在Rt△O′BH中,由O′的坐標(biāo)可得出O′H的長(zhǎng),即可由勾股定理求得BH的長(zhǎng),進(jìn)而可由垂徑定理求出OA的長(zhǎng),即可得到A、B的坐標(biāo);同理可求出C、D的坐標(biāo);
(2)設(shè)過(guò)D的切線交x軸于E,設(shè)EA=x,即可表示出OE、EB的長(zhǎng);可分別用切割線定理及勾股定理得出DE2的表達(dá)式,聯(lián)立兩式即可求出x的值,也就得到了E點(diǎn)的坐標(biāo);進(jìn)而可利用待定系數(shù)法求出直線DE的解析式;
(3)由(1)易得AB=CD,則弧AB=弧CD,由弦切角定理即可得到∠NAO=∠MDN;而∠NAO與∠ANO互余,則∠MDN也與∠ANO互余,由此得證.
解答:精英家教網(wǎng)解:(1)連接O'B,過(guò)點(diǎn)O'分別作x軸、y軸的垂線,垂足分別為H、如圖
∵BH=
O′B2-O′H2
=2,
∴OB=3,
∴點(diǎn)B的坐標(biāo)為(3,0);(1分)
∵AH=BH=2,OH=1,
∴點(diǎn)A的坐標(biāo)為(-1,0),(2分)
類似地,可得到點(diǎn)C、D的坐標(biāo)分別為(0,1),(0,-3);(4分)

(2)設(shè)過(guò)點(diǎn)D的切線交x軸于點(diǎn)E,EA=x,
則DE2=EA•EB=x(x+4);
又在Rt△DOE中,DE2=EO2+DO2=(x+1)2+32,
∴(x+1)2+32=x(x+4);(6分)
解得x=5,即EA=5,點(diǎn)E的坐標(biāo)為(-6,0);(7分)
設(shè)所求切線的解析式為y=kx+b,因?yàn)樗?jīng)過(guò)(0,-3)和(-6,0)兩點(diǎn),
b=-3
-6k+b=0
解得
k=-
1
2
b=-3

∴所求解析式為y-
1
2
-3;(8分)

(3)答:過(guò)點(diǎn)A的切線與過(guò)點(diǎn)D的切線互相垂直.證明如下:(9分)
證明:設(shè)過(guò)點(diǎn)A的切線與DE相交于點(diǎn)M,與y軸相交于點(diǎn)N;
∵AB=CD=4,即有
AB
=
CD

∴∠NAO=∠MDO;(10分)
又∵∠NAO+∠ANO=90°,
∴∠MND+∠MDN=90°;
∴過(guò)點(diǎn)A的切線與過(guò)點(diǎn)D的切線互相垂直.(11分)
點(diǎn)評(píng):此題主要考查了垂徑定理、勾股定理、一次函數(shù)解析式的確定、切線的性質(zhì)、切割線定理、弦切角定理等知識(shí)的綜合應(yīng)用能力,綜合性較強(qiáng),難度較高.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,直線AB與x軸交于點(diǎn)C,與反比例函數(shù)y=
kx
在第二象限的圖象交于點(diǎn)A(-2,6)、點(diǎn)B(-4,m).
(1)求k,m的值; (2)求直線AB的解析式; (3)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

己知:拋物線y=x2-(k+1)x+k
(1)試求k為何值時(shí),拋物線與x軸只有一個(gè)公共點(diǎn);
(2)如圖,若拋物線與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸的負(fù)半軸交于點(diǎn)C,精英家教網(wǎng)試問(wèn):是否存在實(shí)數(shù)k,使△AOC與△COB相似?若存在,求出相應(yīng)的k的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知與x軸交于點(diǎn)A(1,0)和B(5,0)的拋物線的頂點(diǎn)為精英家教網(wǎng)C(3,4),拋物線l2與l1關(guān)于x軸對(duì)稱,頂點(diǎn)為C′.
(1)求拋物線l2的函數(shù)關(guān)系式;
(2)已知原點(diǎn)O,定點(diǎn)D(0,4),l2上的點(diǎn)P與l1上的點(diǎn)P′始終關(guān)于x軸對(duì)稱,則當(dāng)點(diǎn)P運(yùn)動(dòng)到何處時(shí),以點(diǎn)D,O,P,P′為頂點(diǎn)的四邊形是平行四邊形?
(3)在l2上是否存在點(diǎn)M,使△ABM是以AB為斜邊且一個(gè)角為30°的直角三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•聊城)如圖,直線AB與x軸交于點(diǎn)A(1,0),與y軸交于點(diǎn)B(0,-2).
(1)求直線AB的解析式;
(2)若直線AB上的點(diǎn)C在第一象限,且S△BOC=2,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線l與x軸交于點(diǎn)A(-1.5,0),與y軸交于點(diǎn)B(0,3)
(1)求直線l的解析式;
(2)過(guò)點(diǎn)B作直線BP與x軸交于點(diǎn)P,且使OP=2OA,求△ABP的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案