【題目】已知二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過A2,0),B0,﹣6)兩點.

1)求這個二次函數(shù)的解析式;

2)設(shè)該二次函數(shù)圖象的對稱軸與x軸交于點C,連接BA、BC,求△ABC的面積和周長.

【答案】1y=﹣x2+4x6;(2SABC6,△ABC的周長=2+2+2

【解析】

1)先把(2,0)、(0,﹣6)代入二次函數(shù)解析式,可得關(guān)于b、c的方程組,解即可求出函數(shù)解析式;

2)由函數(shù)解析式,易求其對稱軸,從而易得C點的坐標,再利用兩點之間的距離公式,易求ABBC,進而可求ABC的面積和周長.

解:(1)把(20)、(0,﹣6)代入二次函數(shù)解析式,可得

,

解得

故解析式是y=﹣x2+4x6;

2對稱軸x=﹣4

C點的坐標是(4,0),

AC2OB6,AB2BC2,

SABCACOB×2×66

ABC的周長=AC+AB+BC2+2+2

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,點邊中點,動點從點出發(fā),沿著的路徑以每秒1個單位長度的速度運動到點,在此過程中線段的長度隨著運動時間的函數(shù)關(guān)系如圖2所示,則的長為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的直徑為,點上,點,分別在,的延長線上,,垂足為

1)求證:的切線;

2)若,,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=2,BC=4,點E、F分別在BC、CD上,若AE=,EAF=45°,則AF的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BCO的直徑,點AO上,ADBC垂足為D,弧AE=弧AB,BE分別交ADAC于點F、G

1)判斷△FAG的形狀,并說明理由;

2)如圖若點E與點A在直徑BC的兩側(cè),BE、AC的延長線交于點GAD的延長線交BE于點F,其余條件不變(1)中的結(jié)論還成立嗎?請說明理由.

3)在(2)的條件下,若BG26,DF5,求O的直徑BC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把一根長為米的鐵絲折成一個矩形,矩形的一邊長為米,面積為S,

(1)S關(guān)于的函數(shù)表達式和的取值范圍

(2)為何值時,S最大?最大為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在正方形中,點是直線上動點,以為邊作正方形,所在直線與所在直線交于點,連接

1)如圖1,當點邊上時,延長于點,交于點,連接

①求證:

②若,求的值;

2)當正方形的邊長為4,時,請直接寫出的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】圖1和圖2中的正方形ABCD和四邊形AEFG都是正方形.

(1)如圖1,連接DE,BG,M為線段BG的中點,連接AM,探究AM與DE的數(shù)量關(guān)系和位置關(guān)系,并證明你的結(jié)論;

(2)在圖1的基礎(chǔ)上,將正方形AEFG繞點A逆時針方向旋轉(zhuǎn)到圖2的位置,連結(jié)DE、BG,M為線段BG的中點,連結(jié)AM,探究AM與DE的數(shù)量關(guān)系和位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于的一元二次方程.

(1)試證明:無論取何值此方程總有兩個實數(shù)根;

(2)若原方程的兩根,滿足,求的值.

查看答案和解析>>

同步練習冊答案