已知:如圖一,拋物線與x軸正半軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,直線經(jīng)過(guò)A、C兩點(diǎn),且AB=2.

(1)求拋物線的解析式;

(2)若直線DE平行于x軸并從C點(diǎn)開(kāi)始以每秒1個(gè)單位的速度沿y軸正方向平移,且分別交y軸、線段BC于點(diǎn)E,D,同時(shí)動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿BO方向以每秒2個(gè)單位速度運(yùn)動(dòng),(如圖2);當(dāng)點(diǎn)P運(yùn)動(dòng)到原點(diǎn)O時(shí),直線DE與點(diǎn)P都停止運(yùn)動(dòng),連DP,若點(diǎn)P運(yùn)動(dòng)時(shí)間為t秒 ;設(shè),當(dāng)t 為何值時(shí),s有最小值,并求出最小值。

(3)在(2)的條件下,是否存在t的值,使以P、B、D為頂點(diǎn)的三角形與△ABC相似;若存在,求t的值;若不存在,請(qǐng)說(shuō)明理由。

 

【答案】

(1)y=-1/4 x2+3/2 x-2(2)1(3)當(dāng)t=2 /3 或t=10/ 7 時(shí),以P、B、D為頂點(diǎn)的三角形與△ABC相似,證明見(jiàn)解析

【解析】解:(1)由拋物線y=ax2+bx-2得:C(0,-2),

∴OA=OC=2,

∴A(2,0),

∵△ABC的面積為2,

∴AB=2,

∴B(4,0),

∴設(shè)拋物線的解析式為y=a(x-2)(x-4),代入點(diǎn)C(0,-2),

a=-1/4 ,

∴拋物線的解析式為y=-1/4 (x-2)(x-4)=-1/4 x2+3/2 x-2,

答:拋物線的解析式為y=-1/4 x2+3/2 x-2.

(2)解:由題意:CE=t,PB=2t,OP=4-2t,

∵ED∥BA

可得:ED /OB =CE /CO ,

即ED/4 =CE/2 ,

∴ED=2CE=2t,

①1/ED +1/OP =1/2t +1/4-2t =4/2t(4-2t) =1/-t2+2t ,

∵當(dāng)t=1時(shí),-t2+2t有最大值1,

∴當(dāng)t=1時(shí)1 ED +1 OP 的值最小,最小值為1.

答:當(dāng)t為1時(shí),1/ED +1/OP 的值最小,最小值是1.

②解:由題意可求:CD= 5 t,CB=2 5 ,

∴BD=2 5 - 5 t,

∵∠PBD=∠ABC,

∴以P、B、D為頂點(diǎn)的三角形與△ABC相似有兩種情況:

當(dāng)BP AB =BD BC 時(shí),即2t 2 =2 5 - 5 t 2 5  ,

解得:t=2 3 ,

當(dāng)BP BD =BC BA 時(shí),即2t 2 5 - 5 t =2 5  2 ,

解得:t=10 7 ,

當(dāng)t=2/3 或t=10/7 時(shí),以P、B、D為頂點(diǎn)的三角形與△ABC相似.

答:存在t的值,使以P,B,D為頂點(diǎn)的三角形與△ABC相似,t的值是2/3 或10/7 .

(1)求出C的坐標(biāo),得到A、B的坐標(biāo),設(shè)拋物線的解析式為y=a(x-2)(x-4),代入點(diǎn)C的坐標(biāo)求出a即可;

(2)①由題意:CE=t,PB=2t,OP=4-2t,由ED∥BA得出EDOB =CE CO ,求出ED=2CE=2t,根據(jù)1 ED +1 OP =1 2t +1 4-2t =4 2t(4-2t) =1 -t2+2t ,求出即可;

②以P、B、D為頂點(diǎn)的三角形與△ABC相似有兩種情況:BP AB =BD BC 和BP BD =BC BA 代入求出即可.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•鄂州)已知:如圖一,拋物線y=ax2+bx+c與x軸正半軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,直線y=x-2經(jīng)過(guò)A、C兩點(diǎn),且AB=2.
(1)求拋物線的解析式;
(2)若直線DE平行于x軸并從C點(diǎn)開(kāi)始以每秒1個(gè)單位的速度沿y軸正方向平移,且分別交y軸、線段BC于點(diǎn)E,D,同時(shí)動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿BO方向以每秒2個(gè)單位速度運(yùn)動(dòng),(如圖2);當(dāng)點(diǎn)P運(yùn)動(dòng)到原點(diǎn)O時(shí),直線DE與點(diǎn)P都停止運(yùn)動(dòng),連DP,若點(diǎn)P運(yùn)動(dòng)時(shí)間為t秒;設(shè)s=
ED+OPED•OP
,當(dāng)t為何值時(shí),s有最小值,并求出最小值.
(3)在(2)的條件下,是否存在t的值,使以P、B、D為頂點(diǎn)的三角形與△ABC相似;若存在,求t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年初中畢業(yè)升學(xué)考試(湖北鄂州卷)數(shù)學(xué)(帶解析) 題型:解答題

已知:如圖一,拋物線與x軸正半軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,直線經(jīng)過(guò)A、C兩點(diǎn),且AB=2.

(1)求拋物線的解析式;
(2)若直線DE平行于x軸并從C點(diǎn)開(kāi)始以每秒1個(gè)單位的速度沿y軸正方向平移,且分別交y軸、線段BC于點(diǎn)E,D,同時(shí)動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿BO方向以每秒2個(gè)單位速度運(yùn)動(dòng),(如圖2);當(dāng)點(diǎn)P運(yùn)動(dòng)到原點(diǎn)O時(shí),直線DE與點(diǎn)P都停止運(yùn)動(dòng),連DP,若點(diǎn)P運(yùn)動(dòng)時(shí)間為t秒 ;設(shè),當(dāng)t 為何值時(shí),s有最小值,并求出最小值。
(3)在(2)的條件下,是否存在t的值,使以P、B、D為頂點(diǎn)的三角形與△ABC相似;若存在,求t的值;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年湖北省鄂州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

已知:如圖一,拋物線y=ax2+bx+c與x軸正半軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,直線y=x-2經(jīng)過(guò)A、C兩點(diǎn),且AB=2.
(1)求拋物線的解析式;
(2)若直線DE平行于x軸并從C點(diǎn)開(kāi)始以每秒1個(gè)單位的速度沿y軸正方向平移,且分別交y軸、線段BC于點(diǎn)E,D,同時(shí)動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿BO方向以每秒2個(gè)單位速度運(yùn)動(dòng),(如圖2);當(dāng)點(diǎn)P運(yùn)動(dòng)到原點(diǎn)O時(shí),直線DE與點(diǎn)P都停止運(yùn)動(dòng),連DP,若點(diǎn)P運(yùn)動(dòng)時(shí)間為t秒;設(shè)s=,當(dāng)t為何值時(shí),s有最小值,并求出最小值.
(3)在(2)的條件下,是否存在t的值,使以P、B、D為頂點(diǎn)的三角形與△ABC相似;若存在,求t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:浙江省模擬題 題型:填空題

定義:若拋物線的頂點(diǎn)與x軸的兩個(gè)交點(diǎn)構(gòu)成的三角形是直角三角形,則稱這種拋物線為“美麗拋物線”。
已知,如圖一組拋物線的頂點(diǎn)B1(1,y1),B2(2,y2),B3(3,y3),…Bn(n,yn)(n是正整數(shù))依次是直線上的點(diǎn),這組拋物線與x軸正半軸的交點(diǎn)依次是:A1(x1,0),A2(x2,0),A3(x3,0),…An+1(xn+1,0)(n是正整數(shù)),設(shè)x1=a(0<a<1)。則當(dāng)a=(    )時(shí),這組拋物線中存在美麗拋物線。

查看答案和解析>>

同步練習(xí)冊(cè)答案