如圖,已知DE∥BC,且DB=2AD,則以下說法中正確的個數(shù)有(  )
①BC=2DE;②EC=2AE;③
AD
AB
=
1
3
;④
S△ADE
S△ABC
=
1
3
分析:根據(jù)DE∥BC可得:△ADE∽△ABC,然后根據(jù)相似三角形的性質(zhì)即可作出判斷.
解答:解:∵DB=2AD,
∴設(shè)AD=x,則BD=2x,AB=3x.
∵DE∥BC,
∴△ADE∽△ABC,
DE
BC
=
AD
AB
=
x
3x
=
1
3

則BC=3DE,故①錯誤,③正確;

∵DE∥BC,
AE
EC
=
AD
DB
=
x
2x
=
1
2
,
則EC=2AE,故②正確;

∵△ADE∽△ABC,
S△ADE
SABC
=(
AD
AB
2=(
1
3
2=
1
9
,
故④錯誤.
故選B.
點評:本題考查了相似三角形的判定與性質(zhì),理解相似三角形的性質(zhì)是關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

25、如圖,已知DE∥BC,且BF:EF=4:3,則AC:AE=
4:3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

16、如圖,已知DE∥BC,AB∥CD,E為AB的中點,∠A=∠B.下列結(jié)論:
①AC=DE;②CD=AE;
③AC平分∠BCD;④O點是DE的中點;
⑤AC=AB.其中正確的番號有
①②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知DE∥BC,AD=2,BD=3,AE=1,那么AC的長是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知DE∥BC,
AD
BD
=2
,那么
C△ADE
C△ABC
=
2
3
2
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)如圖,EF∥AD,∠1=∠2,∠BAC=70°,將求∠AGD的過程填寫完整.
∵EF∥AD,
已知
已知

∴∠2=
∠3
∠3
兩直線平行,同位角相等
兩直線平行,同位角相等

又∵∠1=∠2,
已知
已知

∴∠1=∠3.
等量代換
等量代換

∴AB∥
DG
DG
內(nèi)錯角相等,兩直線平行
內(nèi)錯角相等,兩直線平行

∴∠BAC+
∠AGD
∠AGD
=180°.
兩直線平行,同旁內(nèi)角互補
兩直線平行,同旁內(nèi)角互補

又∵∠BAC=70°,
已知
已知

∴∠AGD=
110°
110°
數(shù)據(jù)計算
數(shù)據(jù)計算

(2)如圖,已知DE∥BC,∠B=80°,∠C=56°,求∠ADE和∠DEC的度數(shù).
(3)一個多邊形的每一個外角都等于24°,求這個多邊形的邊數(shù).
(4)判斷下列命題是真命題還是假命題,如果是真命題,指出命題的題設(shè)和結(jié)論;如果是假命題舉出一個反例
①相等的角是對頂角;              ②兩直線平行,內(nèi)錯角相等.

查看答案和解析>>

同步練習冊答案