【題目】1)先化簡,再求值5x2-[2xy-3xy+2+4x2],其中x=-2y=
2)若(2a-12+|2a+b|=0,且|c-1|=2,求ca3-b)的值.

【答案】1x2-xy+6,11;(2)當(dāng)c=3時,ca3-b=;當(dāng)c=-1時,ca3-b=-.

【解析】

1)先去括號,再合并同類項,最后代入求出即可;
2)求出a、b、c的值,再分別代入求出即可.

1)原式=5x2-2xy+xy+6-4x2
=x2-xy+6
當(dāng)x=-2,y=時,原式=4+1+6=11
2)∵(2a-12+|2a+b|=0,且|c-1|=2,
a=b=-1,c=3-1,
當(dāng)c=3時,ca3-b=3×+1=;
當(dāng)c=-1時,ca3-b=-1×+1=-.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某飛機(jī)于空中探測某座山的高度,在點(diǎn)A處飛機(jī)的飛行高度是AF=3700米,從飛機(jī)上觀測山頂目標(biāo)C的俯角是45°,飛機(jī)繼續(xù)以相同的高度飛行300米到B處,此時觀測目標(biāo)C的俯角是50°,求這座山的高度CD.(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.20).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某小區(qū)的一個健身器材,已知BC=0.15m,AB=2.70m,BOD=70°,求端點(diǎn)A到地面CD的距離(精確到0.1m).(參考數(shù)據(jù):sin70°0.94,cos70°0.34,tan70°2.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOC=15°,OC平分∠AOBPOC上一點(diǎn),PDOAOB于點(diǎn)D,PEOAE,OD=4cm,則PE=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在樓房MN前有兩棵樹與樓房在同一直線上,且垂直于地面,為了測量樹AB、CD的高度,小明爬到樓房頂部M處,光線恰好可以經(jīng)過樹CD的頂站C點(diǎn)到達(dá)樹AB的底部B點(diǎn),俯角為45°,此時小亮測得太陽光線恰好經(jīng)過樹CD的頂部C點(diǎn)到達(dá)樓房的底部N點(diǎn),與地面的夾角為30°,樹CD的影長DN為15米,請求出樹AB、CD的高度.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn)A0,2),B4,0),C4,3)三點(diǎn).

1)建立平面直角坐標(biāo)系并描出A、B、C三點(diǎn)

2)求ABC的面積;

3)如果在第二象限內(nèi)有一點(diǎn)Pm,1),且四邊形ABOP的面積是ABC的面積的兩倍;求滿足條件的P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O中,直徑CD⊥弦ABMAE⊥BDE,交CDN,連AC

1)求證:ACAN;

2)若OM∶OC3∶5AB5,求⊙O的半徑;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的對角線相交于點(diǎn)O,過點(diǎn)ABD的平行線交CD的延長線于點(diǎn)E

求證: ;

,連接OE,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】水果店以每箱60元新進(jìn)一批蘋果共400箱,為計算總重量,從中任選30箱蘋果稱重,發(fā)現(xiàn)每箱蘋果重量都在10千克左右,現(xiàn)以10千克為標(biāo)準(zhǔn),超過10千克的數(shù)記為正數(shù),不足10千克的數(shù)記為負(fù)數(shù),將稱重記錄如下:

規(guī)格

﹣0.2

﹣0.1

0

0.1

0.2

0.5

筐數(shù)

5

8

2

6

8

1

(1)求30箱蘋果的總重量

(2)若每千克蘋果的售價為10元,則賣完這批蘋果共獲利多少元

查看答案和解析>>

同步練習(xí)冊答案