【題目】如圖,在銳角三角形ABC中,BC=4,∠ABC=60°,BD平分∠ABC,交AC于點(diǎn)D,M,N分別是BD,BC上的動點(diǎn),則CM+MN的最小值是( 。
A. B. 2C. 2D. 4
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等腰三角形ABC的底角為30°,以BC為直徑的⊙O與底邊AB交于點(diǎn)D,過D作DE⊥AC,垂足為E.
(1)證明:DE為⊙O的切線;
(2)連接OE,若BC=4,求△OEC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正六邊形ABCDEF的邊長為2cm,點(diǎn)P為六邊形內(nèi)任一點(diǎn).則點(diǎn)P到各邊距離之和為_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】自我省深化課程改革以來,某校開設(shè)了:A.利用影長求物體高度,B.制作視力表,C.設(shè)計遮陽棚,D.制作中心對稱圖形,四類數(shù)學(xué)實(shí)踐活動課.規(guī)定每名學(xué)生必選且只能選修一類實(shí)踐活動課,學(xué)校對學(xué)生選修實(shí)踐活動課的情況進(jìn)行抽樣調(diào)查,將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.
根據(jù)圖中信息解決下列問題:
(1)本次共調(diào)查名學(xué)生,扇形統(tǒng)計圖中B所對應(yīng)的扇形的圓心角為度;
(2)補(bǔ)全條形統(tǒng)計圖;
(3)選修D類數(shù)學(xué)實(shí)踐活動的學(xué)生中有2名女生和2名男生表現(xiàn)出色,現(xiàn)從4人中隨機(jī)抽取2人做校報設(shè)計,請用列表或畫樹狀圖法求所抽取的兩人恰好是1名女生和1名男生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,有下列5個結(jié)論:①abc<0;②4a+2b+c>0;③b2-4ac<0;④b>a+c;⑤a+2b+c>0,其中正確的結(jié)論有( 。
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)m,n是任意兩個實(shí)數(shù),規(guī)定m,n兩數(shù)較大的的數(shù)稱作這兩個數(shù)的“絕對最值”,用sec(m,n)表示。例如:sec(-1,-2)=-1,sec(1,2)=2,sec(0,0)=0,參照上面的材料,解答下列問題:
(1)sec(,3.14)=________,sec(,)=__________;
(2)若sec(-3x-1,x+1)=-3x-1,求x的取值范圍;
(3)求函數(shù)與的圖象的交點(diǎn)坐標(biāo),函數(shù)圖象如圖所示,請你在圖中作出函數(shù)的圖象,并根據(jù)圖象直接寫出sec(-x+2, )的最小值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將繞點(diǎn)順時針旋轉(zhuǎn)得到,使點(diǎn)的對應(yīng)點(diǎn)恰好落在邊上,點(diǎn)的對應(yīng)點(diǎn)為,連接.下列結(jié)論一定正確的是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,BC=6,E是BC邊的中點(diǎn),點(diǎn)P在線段AD上,過P作PF⊥AE于F,設(shè)PA=x.
(1)求證:△PFA∽△ABE;
(2)當(dāng)點(diǎn)P在線段AD上運(yùn)動時,設(shè)PA=x,是否存在實(shí)數(shù)x,使得以點(diǎn)P,F,E為頂點(diǎn)的三角形也與△ABE相似?若存在,請求出x的值;若不存在,請說明理由;
(3)探究:當(dāng)以D為圓心,DP為半徑的⊙D與線段AE只有一個公共點(diǎn)時,請直接寫出x滿足的條件: .
備用圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB、CD為⊙O的直徑,弦AE∥CD,連接BE交CD于點(diǎn)F,過點(diǎn)E作直線EP與CD的延長線交于點(diǎn)P,使∠PED=∠C.
(1)求證:PE是⊙O的切線;
(2)求證:ED平分∠BEP;
(3)若⊙O的半徑為5,CF=2EF,求PD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com