如果矩形ABCD的對(duì)角線的交點(diǎn)與平面直角坐標(biāo)系的原點(diǎn)重合,且點(diǎn)A和點(diǎn)B的坐標(biāo)分別為(-3,2)和(3,2),則矩形的面積為

[  ]

A.32
B.24
C.6
D.8
答案:B
解析:

如圖,D、A坐標(biāo)分別為(3,2)、(3,2),

B、C與D、A關(guān)于原點(diǎn)對(duì)稱,則B、C坐標(biāo)分別為(3,-2)、(-3,-2)

∴AB=4,AD=6,

矩形的面積=AB·AD=6.

選C.

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知矩形ABCD中,AB=12cm,BC=6cm,點(diǎn)M沿AB方向從A向B以2cm/秒的速度移動(dòng),點(diǎn)N從D沿DA方向以1c精英家教網(wǎng)m/秒的速度移動(dòng),如果M、N兩點(diǎn)同時(shí)出發(fā),移動(dòng)的時(shí)間為x秒(0≤x≤6).
(1)當(dāng)x為何值時(shí),△MAN為等腰直角三角形?
(2)當(dāng)x為何值時(shí),有△MAN∽△ABC?
(3)愛動(dòng)腦筋的小紅同學(xué)在完成了以上聯(lián)系后,對(duì)該問題作了深入的研究,她認(rèn)為:在M、N的移動(dòng)過程中(N不與D、A重合,M不與A、B重合),以A、M、C、N為頂點(diǎn)的四邊形面積是一個(gè)常數(shù).她的這種想法對(duì)嗎?請(qǐng)說出理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2010•來賓)如圖,在矩形ABCD(AB<AD)中,將△ABE沿AE對(duì)折,使AB邊落在對(duì)角線AC上,點(diǎn)B的對(duì)應(yīng)點(diǎn)為F,同時(shí)將△CEG沿EG對(duì)折,使CE邊落在EF所在直線上,點(diǎn)C的對(duì)應(yīng)點(diǎn)為H.

(1)證明:AF∥HG(圖(1));
(2)證明:△AEF∽△EGH(圖(1));
(3)如果點(diǎn)C的對(duì)應(yīng)點(diǎn)H恰好落在邊AD上(圖(2)).求此時(shí)∠BAC的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆江蘇省南京市白下區(qū)中考二模數(shù)學(xué)試卷(帶解析) 題型:解答題

(1)如圖①,P為△ABC的邊AB上一點(diǎn)(P不與點(diǎn)A、點(diǎn)B重合),連接PC,如果△CBP∽△ABC,那么就稱P為△ABC的邊AB上的相似點(diǎn).
畫法初探
①如圖②,在△ABC中,∠ACB>90°,畫出△ABC的邊AB上的相似點(diǎn)P(畫圖工具不限,保留畫圖痕跡或有必要的說明);

辯證思考
②是不是所有的三角形都存在它的邊上的相似點(diǎn)?如果是,請(qǐng)說明理由;如果不是,請(qǐng)找出一個(gè)不存在邊上相似點(diǎn)的三角形;
特例分析
③已知P為△ABC的邊AB上的相似點(diǎn),連接PC,若△ACP∽△ABC,則△ABC的形狀是   ;
④如圖③,在△ABC中,AB=AC,∠A=36°,P是邊AB上的相似點(diǎn),求的值.
(2)在矩形ABCD中,AB=a,BC=b(a≥b).P是AB上的點(diǎn)(P不與點(diǎn)A、點(diǎn)B重合),作PQ⊥CD,垂足為Q.如果矩形ADQP∽矩形ABCD,那么就稱PQ為矩形ABCD的邊AB、CD上的相似線.

①類比(1)中的“畫法初探”,可以提出問題:對(duì)于如圖④的矩形ABCD,在不限制畫圖工具的前提下,如何畫出它的邊AB、CD上的相似線PQ呢?
你的解答是:   (只需描述PQ的畫法,不需在圖上畫出PQ).
②請(qǐng)繼續(xù)類比(1)中的“辯證思考”、“特例分析”兩個(gè)欄目對(duì)矩形的相似線進(jìn)行研究,要求每個(gè)欄目提出一個(gè)問題并解決.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省南京市白下區(qū)中考二模數(shù)學(xué)試卷(解析版) 題型:解答題

(1)如圖①,P為△ABC的邊AB上一點(diǎn)(P不與點(diǎn)A、點(diǎn)B重合),連接PC,如果△CBP∽△ABC,那么就稱P為△ABC的邊AB上的相似點(diǎn).

畫法初探

①如圖②,在△ABC中,∠ACB>90°,畫出△ABC的邊AB上的相似點(diǎn)P(畫圖工具不限,保留畫圖痕跡或有必要的說明);

辯證思考

②是不是所有的三角形都存在它的邊上的相似點(diǎn)?如果是,請(qǐng)說明理由;如果不是,請(qǐng)找出一個(gè)不存在邊上相似點(diǎn)的三角形;

特例分析

③已知P為△ABC的邊AB上的相似點(diǎn),連接PC,若△ACP∽△ABC,則△ABC的形狀是   ;

④如圖③,在△ABC中,AB=AC,∠A=36°,P是邊AB上的相似點(diǎn),求的值.

(2)在矩形ABCD中,AB=a,BC=b(a≥b).P是AB上的點(diǎn)(P不與點(diǎn)A、點(diǎn)B重合),作PQ⊥CD,垂足為Q.如果矩形ADQP∽矩形ABCD,那么就稱PQ為矩形ABCD的邊AB、CD上的相似線.

①類比(1)中的“畫法初探”,可以提出問題:對(duì)于如圖④的矩形ABCD,在不限制畫圖工具的前提下,如何畫出它的邊AB、CD上的相似線PQ呢?

你的解答是:   (只需描述PQ的畫法,不需在圖上畫出PQ).

②請(qǐng)繼續(xù)類比(1)中的“辯證思考”、“特例分析”兩個(gè)欄目對(duì)矩形的相似線進(jìn)行研究,要求每個(gè)欄目提出一個(gè)問題并解決.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)如圖①,P為△ABC的邊AB上一點(diǎn)(P不與點(diǎn)A、點(diǎn)B重合),連接PC,如果△CBP∽△ABC,那么就稱P為△ABC的邊AB上的相似點(diǎn).

         畫法初探

①如圖②,在△ABC中,∠ACB>90°,畫出△ABC的邊AB上的相似點(diǎn)P(畫圖工具不限,保留畫圖痕跡或有必要的說明);

 


辯證思考

②是不是所有的三角形都存在它的邊上的相似點(diǎn)?如果是,請(qǐng)說明理由;如果不是,請(qǐng)找出一個(gè)不存在邊上相似點(diǎn)的三角形;

特例分析

③已知P為△ABC的邊AB上的相似點(diǎn),連接PC,若△ACP∽△ABC,則△ABC的形狀是  ▲  ;

④如圖③,在△ABC中,ABAC,∠A=36°,P是邊AB上的相似點(diǎn),求的值.

(2)在矩形ABCD中,ABaBCbab).PAB上的點(diǎn)(P不與點(diǎn)A、點(diǎn)B重合),作PQCD,垂足為Q.如果矩形ADQP∽矩形ABCD,那么就稱PQ為矩形ABCD的邊AB、CD上的相似線.

     ①類比(1)中的“畫法初探”,可以提出問題:對(duì)于如圖④的矩形ABCD,在不限制畫圖工具的前提下,如何畫出它的邊ABCD上的相似線PQ呢?

       你的解答是:  ▲  (只需描述PQ的畫法,不需在圖上畫出PQ).

        ②請(qǐng)繼續(xù)類比(1)中的“辯證思考”、“特例分析”兩個(gè)欄目對(duì)矩形的相似線進(jìn)行研究,要求每個(gè)欄目提出一個(gè)問題并解決

查看答案和解析>>

同步練習(xí)冊(cè)答案