【題目】如圖,在平面直角坐標(biāo)系中有Rt△ABC,∠A=90°,AB=AC,A(﹣2,0)、B(0,1)、C(d,2).
(1)求d的值;
(2)將△ABC沿x軸的正方向平移,在第一象限內(nèi)B、C兩點的對應(yīng)點B′、C′正好落在某反比例函數(shù)圖象上.請求出這個反比例函數(shù)和此時的直線B′C′的解析式;
(3)在(2)的條件下,直線BC交y軸于點G.問是否存在x軸上的點M和反比例函數(shù)圖象上的點P,使得四邊形PGMC′是平行四邊形?如果存在,請求出點M和點P的坐標(biāo);如果不存在,請說明理由.
【答案】
(1)
解:作CN⊥x軸于點N,
∵A(﹣2,0)、B(0,1)、C(d,2),
∴OA=2,OB=1,CN=2,
∵∠CAB=90°,即∠CAN+∠BAO=90°,
又∵∠CAN+∠ACN=90°,
∴∠BAO=∠ACN,
在Rt△CNA和Rt△AOB中,
∵ ,
∴Rt△CNA≌Rt△AOB(AAS),
∴NC=OA=2,AN=BO=1,
∴NO=NA+AO=3,又點C在第二象限,
∴d=﹣3;
(2)
解:設(shè)反比例函數(shù)為y= (k≠0),點C′和B′在該比例函數(shù)圖象上,
設(shè)C′(m,2),則B′(m+3,1),
把點C′和B′的坐標(biāo)分別代入y= ,得k=2m;k=m+3,
∴2m=m+3,
解得:m=3,
則k=6,反比例函數(shù)解析式為y= ,點C′(3,2),B′(6,1),
設(shè)直線C′B′的解析式為y=ax+b(a≠0),
把C′、B′兩點坐標(biāo)代入得:
,
∴解得: ;
∴直線C′B′的解析式為y=﹣ x+3;
(3)
解:存在x軸上的點M和反比例函數(shù)圖象上的點P,使得四邊形PGMC′是平行四邊形,理由為:
設(shè)Q是G C′的中點,令y=﹣ x+3中x=0,得到y(tǒng)=3,
∴G(0,3),又C′(3,2),
∴Q( , ),
過點Q作直線l與x軸交于M′點,與y= 的圖象交于P′點,
若四邊形P′G M′C′是平行四邊形,則有P′Q=Q M′,
易知點M′的橫坐標(biāo)大于 ,點P′的橫坐標(biāo)小于 ,
作P′H⊥x軸于點H,QK⊥y軸于點K,P′H與QK交于點E,作QF⊥x軸于點F,
∵QF∥P′E,
∴∠M′QF=∠QP′E,
在△P′EQ和△QFM′中,
∵ ,
∴△P′EQ≌△QFM′(AAS),
∴EQ=FM′,P′Q=QM′,
設(shè)EQ=FM′=t,
∴點P′的橫坐標(biāo)x= ﹣t,點P′的縱坐標(biāo)y=2yQ=5,點M′的坐標(biāo)是( +t,0),
∴P′在反比例函數(shù)圖象上,即5( ﹣t)=6,
解得:t= ,
∴P′( ,5),M′( ,0),
則點P′為所求的點P,點M′為所求的點M.
【解析】(1)過C作CN垂直于x軸,交x軸于點N,由A、B及C的坐標(biāo)得出OA,OB,CN的長,由∠CAB=90°,根據(jù)平角定義得到一對角互余,在直角三角形ACN中,根據(jù)兩銳角互余,得到一對角互余,利用同角的余角相等得到一對角相等,再由一對直角相等,且AC=BC,利用AAS到三角形ACN與三角形AOB全等,根據(jù)全等三角形的對應(yīng)邊相等可得出CN=0A,AN=0B,由AN+OA求出ON的長,再由C在第二象限,可得出d的值;(2)由第一問求出的C與B的橫坐標(biāo)之差為3,根據(jù)平移的性質(zhì)得到縱坐標(biāo)不變,故設(shè)出C′(m,2),則B′(m+3,1),再設(shè)出反比例函數(shù)解析式,將C′與B′的坐標(biāo)代入得到關(guān)于k與m的兩方程,消去k得到關(guān)于m的方程,求出方程的解得到m的值,即可確定出k的值,得到反比例函數(shù)解析式,設(shè)直線B′C′的解析式為y=ax+b,將C′與B′的坐標(biāo)代入,得到關(guān)于a與b的二元一次方程組,求出方程組的解得到a與b的值,即可確定出直線B′C′的解析式;(3)存在x軸上的點M和反比例函數(shù)圖象上的點P,使得四邊形PGMC′是平行四邊形,理由為:設(shè)Q為GC′的中點,令第二問求出的直線B′C′的解析式中x=0求出y的值,確定出G的坐標(biāo),再由C′的坐標(biāo),利用線段中點坐標(biāo)公式求出Q的坐標(biāo),過點Q作直線l與x軸交于M′點,與y= 的圖象交于P′點,若四邊形P′G M′C′是平行四邊形,則有P′Q=Q M′,易知點M′的橫坐標(biāo)大于 ,點P′的橫坐標(biāo)小于 ,作P′H⊥x軸于點H,QK⊥y軸于點K,P′H與QK交于點E,作QF⊥x軸于點F,由兩直線平行得到一對同位角相等,再由一對直角相等及P′Q=QM′,利用AAS可得出△P′EQ與△QFM′全等,根據(jù)全等三角形的對應(yīng)邊相等,設(shè)EQ=FM′=t,由Q的橫坐標(biāo)﹣t表示出P′的橫坐標(biāo),代入反比例函數(shù)解析式確定出P′的縱坐標(biāo),進而確定出M′的坐標(biāo),根據(jù)P′H﹣EH=P′H﹣QF表示出P′E的長,又P′Q=QM′,分別放在直角三角形中,利用勾股定理列出關(guān)于t的方程,求出方程的解得到t的值,進而確定出P′與M′的坐標(biāo),此時點P′為所求的點P,點M′為所求的點M.
【考點精析】關(guān)于本題考查的全等三角形的性質(zhì),需要了解全等三角形的對應(yīng)邊相等; 全等三角形的對應(yīng)角相等才能得出正確答案.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABE≌△ACD.
(1)如果BE=6,DE=2,求BC的長;
(2)如果∠BAC=75°,∠BAD=30°,求∠DAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生最喜愛的球類運動,某初中在全校2000名學(xué)生中抽取部分學(xué)生進行調(diào)查,要求學(xué)生只能從“A(籃球)、B(羽毛球)、C(足球)、D(乒乓球)”中選擇一種.
(1)小明直接在八年級學(xué)生中隨機調(diào)查了一些同學(xué).他的抽樣是否合理?請說明理由.
(2)小王從各年級隨機抽取了部分同學(xué)進行調(diào)查,整理數(shù)據(jù),繪制出下列兩幅不完整的統(tǒng)計圖.請根據(jù)圖中所提供的信息,回答下列問題:
①請將條形統(tǒng)計圖補充完整;
②估計該初中最喜愛乒乓球的學(xué)生人數(shù)約為 人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們經(jīng)常遇到需要分類的問題,畫“樹形圖”可以幫我們不重復(fù)、不遺漏地分類.
(例題)在等腰三角形ABC中,若∠A=80°,求∠B的度數(shù).
∠A、∠B都可能是頂角或底角,因此需要分成如圖1所示的3類,這樣的圖就是樹形圖,據(jù)此可求出∠B=
(應(yīng)用)
(1)已知等腰三角形ABC周長為19,AB=7,仿照例題畫出樹形圖,并直接寫出BC的長度;
(2)將一個邊長為5、12、13的直角三角形拼上一個三角形后可以拼成一個等腰三角形,圖2就是其中的一種拼法,請你畫出其他所有可能的情形,并在圖上標(biāo)出所拼成等腰三角形的腰的長度.(選用圖3中的備用圖畫圖,每種情形用一個圖形單獨表示,并用①、②、③…編號,若備用圖不夠,請自己畫圖補充)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB、CD相交于點O.已知∠BOD=75°,OE把∠AOC分成兩個角,且∠AOE:∠EOC=2:3.
(1)求∠AOE的度數(shù);
(2)若OF平分∠BOE,問:OB是∠DOF的平分線嗎?試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由于受金融危機的影響,某店經(jīng)銷的甲型號手機今年的售價比去年每臺降價500元.如果賣出相同數(shù)量的手機,那么去年銷售額為8萬元,今年銷售額只有6萬元.
(1)今年甲型號手機每臺售價為多少元?
(2)為了提高利潤,該店計劃購進乙型號手機銷售,已知甲型號手機每臺進價為1000元,乙型號手機每臺進價為800元,預(yù)計用不多于1.84萬元且不少于1.76萬元的資金購進這兩種手機共20臺,請問有幾種進貨方案?
(3)若乙型號手機的售價為1400元,為了促銷,公司決定每售出一臺乙型號手機,返還顧客現(xiàn)金a元,而甲型號手機仍按今年的售價銷售,要使(2)中所有方案獲利相同,a應(yīng)取何值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,D,F(xiàn)分別為CB,BA上的點,且CD=BF,以AD為邊作等邊三角形ADE。
求證:(1)△ACD≌△CBF;
(2)四邊形CDEF為平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是放在地面上的一個長方體盒子,其中AB=18cm,BC=12cm,BF=10cm,點M在棱AB上,且AM=6cm,點N是FG的中點,一只螞蟻要沿著長方體盒子的表面從點M爬行到點N,它需要爬行的最短路程為____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com