下列式子中,不能用平方差公式計(jì)算的是


  1. A.
    (m-n)(n-m)
  2. B.
    (x2-y2)(x2+y2
  3. C.
    (-a-b)(a-b)
  4. D.
    (a2-b2)(b2+a2
A
分析:根據(jù)公式(a+b)(a-b)=a2-b2的特點(diǎn)進(jìn)行判斷即可.
解答:A、(m-n)(n-m)=-(n-m)2,不能用平方差公式進(jìn)行計(jì)算,故本選項(xiàng)正確;
B、(x2-y2)(x2+y2)=x4-y4,故本選項(xiàng)錯(cuò)誤;
C、(-a-b)(a-b)=(-b)2-a2,故本選項(xiàng)錯(cuò)誤;
D、(a2-b2)(b2+a2)=a4-b4,故本選項(xiàng)錯(cuò)誤.
故選A.
點(diǎn)評(píng):本題主要考查對(duì)平方差公式的理解和掌握,能判斷是否能用公式進(jìn)行計(jì)算是解此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

20、閱讀下列材料,并解答相應(yīng)問(wèn)題:
對(duì)于二次三項(xiàng)式x2+2ax+a2這樣的完全平方式,可以用公式法將它分解成(x+a)2的形式,但是對(duì)于二次三項(xiàng)式x2+2ax-3a2,就不能直接應(yīng)用完全平方公式了,我們可以在二次三項(xiàng)式x2+2ax-3a2中先加上一項(xiàng)a2,使其成為完全平方式,再減去a這項(xiàng),使整個(gè)式子的值不變,于是有:
x2+2ax-3a2=x2+2ax+a2-a2-3a2
=(x+a)2-(2a)2
=(x+2a+a)(x+a-2a)
=(x+3a)(x-a).
(1)像上面這樣把二次三項(xiàng)式分解因式的數(shù)學(xué)方法是.
配方法

(2)這種方法的關(guān)鍵是.
配成完全平方式

(3)用上述方法把m2-6m+8分解因式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年初中數(shù)學(xué)單元提優(yōu)測(cè)試卷-公式法(帶解析) 題型:解答題

閱讀下列材料,并解答相應(yīng)問(wèn)題:
對(duì)于二次三項(xiàng)式x2+2ax+a2這樣的完全平方式,可以用公式法將它分解成(x+a)2的形式,但是對(duì)于二次三項(xiàng)式x2+2ax﹣3a2,就不能直接應(yīng)用完全平方公式了,我們可以在二次三項(xiàng)式x2+2ax﹣3a2中先加上一項(xiàng)a2,使其成為完全平方式,再減去a這項(xiàng),使整個(gè)式子的值不變,于是有:
x2+2ax﹣3a2=x2+2ax+a2﹣a2﹣3a2
=(x+a)2﹣(2a)2
=(x+2a+a)(x+a﹣2a)
=(x+3a)(x﹣a).
(1)像上面這樣把二次三項(xiàng)式分解因式的數(shù)學(xué)方法是.     
(2)這種方法的關(guān)鍵是.     
(3)用上述方法把m2﹣6m+8分解因式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年初中數(shù)學(xué)單元提優(yōu)測(cè)試卷-公式法(解析版) 題型:解答題

閱讀下列材料,并解答相應(yīng)問(wèn)題:

對(duì)于二次三項(xiàng)式x2+2ax+a2這樣的完全平方式,可以用公式法將它分解成(x+a)2的形式,但是對(duì)于二次三項(xiàng)式x2+2ax﹣3a2,就不能直接應(yīng)用完全平方公式了,我們可以在二次三項(xiàng)式x2+2ax﹣3a2中先加上一項(xiàng)a2,使其成為完全平方式,再減去a這項(xiàng),使整個(gè)式子的值不變,于是有:

x2+2ax﹣3a2=x2+2ax+a2﹣a2﹣3a2

=(x+a)2﹣(2a)2

=(x+2a+a)(x+a﹣2a)

=(x+3a)(x﹣a).

(1)像上面這樣把二次三項(xiàng)式分解因式的數(shù)學(xué)方法是.     

(2)這種方法的關(guān)鍵是.     

(3)用上述方法把m2﹣6m+8分解因式.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

閱讀下列材料,并解答相應(yīng)問(wèn)題:
對(duì)于二次三項(xiàng)式x2+2ax+a2這樣的完全平方式,可以用公式法將它分解成(x+a)2的形式,但是對(duì)于二次三項(xiàng)式x2+2ax-3a2,就不能直接應(yīng)用完全平方公式了,我們可以在二次三項(xiàng)式x2+2ax-3a2中先加上一項(xiàng)a2,使其成為完全平方式,再減去a這項(xiàng),使整個(gè)式子的值不變,于是有:
x2+2ax-3a2=x2+2ax+a2-a2-3a2
=(x+a)2-(2a)2
=(x+2a+a)(x+a-2a)
=(x+3a)(x-a).
(1)像上面這樣把二次三項(xiàng)式分解因式的數(shù)學(xué)方法是.______
(2)這種方法的關(guān)鍵是.______
(3)用上述方法把m2-6m+8分解因式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

閱讀下列材料,并解答相應(yīng)問(wèn)題:
對(duì)于二次三項(xiàng)式x2+2ax+a2這樣的完全平方式,可以用公式法將它分解成(x+a)2的形式,但是對(duì)于二次三項(xiàng)式x2+2ax-3a2,就不能直接應(yīng)用完全平方公式了,我們可以在二次三項(xiàng)式x2+2ax-3a2中先加上一項(xiàng)a2,使其成為完全平方式,再減去a這項(xiàng),使整個(gè)式子的值不變,于是有:
x2+2ax-3a2=x2+2ax+a2-a2-3a2
=(x+a)2-(2a)2
=(x+2a+a)(x+a-2a)
=(x+3a)(x-a).
(1)像上面這樣把二次三項(xiàng)式分解因式的數(shù)學(xué)方法是.______
(2)這種方法的關(guān)鍵是.______
(3)用上述方法把m2-6m+8分解因式.

查看答案和解析>>

同步練習(xí)冊(cè)答案