若一元二次方程ax2+bx+c=0(a≠0)的系數(shù)滿足4a-2b+c=0,則這個(gè)方程必有一個(gè)根是(  )
分析:由題意可知:把x=-2代入一元二次方程ax2+bx+c=0(a≠0)中即可得到4a-2b+c=0,則據(jù)此可以知道方程的根.
解答:解:由題意,一元二次方程ax2+bx+c=0(a≠0)的系數(shù)滿足4a-2b+c=0,
所以,當(dāng)x=-2時(shí),一元二次方程ax2+bx+c=0即為:a×(-2)2+b×(-2)+c=0,即4a-2b+c=0,
綜上可知,方程必有一根為-2.
故選:D.
點(diǎn)評(píng):本題考查了一元二次方程的解,此類(lèi)題目的解法是常常將1、-1或0等特殊值代入方程,來(lái)推理判斷方程系數(shù)的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若一元二次方程ax2+bx+c=0(a≠0)有一個(gè)根為-1,則a、b、c的關(guān)系是
a-b+c=0
a-b+c=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

二次函數(shù)y=ax2+bx的圖象如圖,若一元二次方程ax2+bx+m=0有實(shí)數(shù)根,求m的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若一元二次方程ax2+bx+c=0中的二次項(xiàng)系數(shù)與常數(shù)項(xiàng)之和等于一次項(xiàng)系數(shù),則方程必有一根是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象過(guò)點(diǎn)A(2,0),B(-2,-4),對(duì)稱(chēng)軸為直線x=-1.
(1)求這個(gè)二次函數(shù)的解析式;
(2)若-3<x<3,直接寫(xiě)出y的取值范圍;
(3)若一元二次方程ax2+bx+c-m=0(a≠0,m為實(shí)數(shù))在-3<x<3的范圍內(nèi)有實(shí)數(shù)根,直接寫(xiě)出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若一元二次方程ax2+bx+c=0中的a=2,b=0,c=-1,則這個(gè)一元二次方程是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案