如圖,在梯形ABCD中,AD∥BC,AB=AD=DC=2cm,BC=4cm,在等腰△PQR中,∠QPR=120°,底邊QR=6cm,點B、C、Q、R在同一直線上,且C、Q兩點重合,如果等腰△PQR以1cm/秒的速度沿直線箭頭所示方向勻速運動,t秒時梯形ABCD與等腰△PQR重合部分的面積記為S平方厘米。
(1)當t=4時,求S的值;
(2)當4≤t≤10時,求S與t的函數(shù)關系式,并求出S的最大值。
解:(1)當t=4時,Q與B重合,P與D重合,
重合部分是
其面積S= 。

(2)當4≤t≤6時,如圖,BQ=t-4,CR=6-t,
由△PQR∽△BQM∽△CRN,
,,

;
當6≤t≤10時,如圖,BR=10-t,BK⊥RK,且∠KRB=30°,
所以,BK=BR=(10-t),KR=(10-t),
∴S=BK×KR=,
易知,Smax=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

11、如圖,在梯形ABCD中,AB∥CD,對角線AC、BD交于點O,則S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,AB⊥AD,對角線BD⊥DC.
(1)求證:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

20、如圖,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,則梯形面積S梯形ABCD=
38.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD為直徑的半圓O切AB于點E,這個梯形的面積為21cm2,周長為20cm,那么半圓O的半徑為( 。
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步練習冊答案