【題目】已知:如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+x的對稱軸為直線x=2,頂點為A.點P為拋物線對稱軸上一點,連結(jié)OA、OP.當(dāng)OA⊥OP時,P點坐標(biāo)為 .
【答案】(2,﹣4)
【解析】解:∵拋物線y=ax2+x的對稱軸為直線x=2, ∴﹣ =2,
∴a=﹣ ,
∴拋物線的表達(dá)式為:y=﹣ x2+x,
∴頂點A的坐標(biāo)為(2,1),
設(shè)對稱軸與x軸的交點為E.
如圖,在直角三角形AOE和直角三角形POE中,tan∠OAE= ,tan∠EOP= ,
∵OA⊥OP,
∴∠OAE=∠EOP,
∴ = ,
∵AE=1,OE=2,
∴ = ,
解得PE=4,
∴P(2,﹣4),
所以答案是:(2,﹣4).
【考點精析】解答此題的關(guān)鍵在于理解二次函數(shù)的性質(zhì)的相關(guān)知識,掌握增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“龜兔賽跑”的故事同學(xué)們都非常熟悉,圖中的線段OD和折線OABC表示“龜兔賽跑”時路程與時間的關(guān)系,請你根據(jù)圖中給出的信息,解決下列問題.
(1)填空:折線OABC表示賽跑過程中 的路程與時間的關(guān)系,線段OD表示賽跑過程中 的路程與時間的關(guān)系.賽跑的全程是 米.
(2)兔子在起初每分鐘跑 米,烏龜每分鐘爬 米.
(3)烏龜用了 分鐘追上了正在睡覺的兔子.
(4)兔子醒來,以48千米/時的速度跑向終點,結(jié)果還是比烏龜晚到了0.5分鐘,請你算算兔子中間停下睡覺用了多少分鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,每個小正方形的邊長為一個單位長度.已知△ABC的頂點A(-2,5)、B(-4,1)、C(2,3),將△ABC平移得到△A′B′C′,點A(a,b)對應(yīng)點A′(a+3,b-4)
(1) 畫出△A′B′C′并寫出點B′、C′的坐標(biāo)
(2) 試求線段AB在整個平移的過程中在坐標(biāo)平面上掃過的面積
(3) 在x軸上存在一點P,使得S△ABP=6,則點P的坐標(biāo)是_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】手機(jī)微信推出了搶紅包游戲,它有多種玩法,其中一種為“拼手氣紅包”,用戶設(shè)定好總金額以及紅包個數(shù)后,可以生成不等金額的紅包.現(xiàn)有一用戶發(fā)了三個“拼手氣紅包”,總金額為3元,隨機(jī)被甲、乙、丙三人搶到.
(1)判斷下列事件中,哪些是確定事件,哪些是不確定事件?
①丙搶到金額為1元的紅包;
②乙搶到金額為4元的紅包
③甲、乙兩人搶到的紅包金額之和一定比丙搶到的紅包金額多;
(2)記金額最多、居中、最少的紅包分別為A,B,C.
①求出甲搶到紅包A的概率;
②若甲沒搶到紅包A,則乙能搶到紅包A的概率又是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,射線OA∥射線CB,∠C=∠OAB=100°.點D、E在線段CB上,且∠DOB=∠BOA,OE平分∠DOC.
(1)試說明AB∥OC的理由;
(2)試求∠BOE的度數(shù);
(3)平移線段AB;
①試問∠OBC:∠ODC的值是否會發(fā)生變化?若不會,請求出這個比值;若會,請找出相應(yīng)變化規(guī)律.
②若在平移過程中存在某種情況使得∠OEC=∠OBA,試求此時∠OEC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣(2k+1)x+4(k﹣)=0.
(1)判斷這個一元二次方程的根的情況;
(2)若等腰三角形的一邊長為3,另兩條邊的長恰好是這個方程的兩個根,求這個等腰三角形的周長及面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形紙片ABCD的邊長為4cm,點M、N分別在邊AB、CD上.將該紙片沿MN折疊,使點D落在邊BC上,落點為E,MN與DE相交于點Q.隨著點M的移動,點Q移動路線長度的最大值是____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com